Ying Qi, Juan Cao, Mingjing Jiang, Ying Lin, Weibo Li, Bo Li
{"title":"HSP27/IL-6 axis promotes OSCC chemoresistance, invasion and migration by orchestrating macrophages via a positive feedback loop.","authors":"Ying Qi, Juan Cao, Mingjing Jiang, Ying Lin, Weibo Li, Bo Li","doi":"10.1007/s10565-024-09983-1","DOIUrl":null,"url":null,"abstract":"<p><p>Novel strategies to disrupt tumor progression have emerged from studying the interactions between tumor cells and tumor-associated macrophages (TAMs). However, the molecular mechanisms of interactions between tumor cells and TAMs underlying oral squamous cell carcinoma (OSCC) progression have not been fully elucidated. This study explored the molecular mechanism of the HSP27/IL-6 axis in OSCC chemoresistance, invasion, and migration. Here, we demonstrated the higher expression of HSP27 in OSCC cells. Paracrine HSP27 from OSCC cells enhanced chemoresistance, invasion, migration, and EMT in OSCC by inducing M2 polarization and IL-6 secretion in TAMs. HSP27 and IL-6 established a positive feedback loop between OSCC cells and M2 TAMs. TAMs-derived IL-6 orchestrated OSCC stemness and chemoresistance through upregulating β-catenin and CD44, and enhanced OSCC invasion, migration, and EMT via autocrine HSP27/TLR4 signaling. Collectively, HSP27/IL-6 axis facilitates OSCC chemoresistance, invasion, and migration by orchestrating macrophages through a positive feedback loop. We identify the regulatory mechanism underlying the interaction and crosstalk between OSCC cells and TAMs mediated by the HSP27/IL-6 axis. Targeting the HSP27/IL-6 axis could be a promising treatment strategy for OSCC patients, potentially controlling disease progression and improving prognosis and recurrence outcomes.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"41 1","pages":"36"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775009/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology and Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10565-024-09983-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Novel strategies to disrupt tumor progression have emerged from studying the interactions between tumor cells and tumor-associated macrophages (TAMs). However, the molecular mechanisms of interactions between tumor cells and TAMs underlying oral squamous cell carcinoma (OSCC) progression have not been fully elucidated. This study explored the molecular mechanism of the HSP27/IL-6 axis in OSCC chemoresistance, invasion, and migration. Here, we demonstrated the higher expression of HSP27 in OSCC cells. Paracrine HSP27 from OSCC cells enhanced chemoresistance, invasion, migration, and EMT in OSCC by inducing M2 polarization and IL-6 secretion in TAMs. HSP27 and IL-6 established a positive feedback loop between OSCC cells and M2 TAMs. TAMs-derived IL-6 orchestrated OSCC stemness and chemoresistance through upregulating β-catenin and CD44, and enhanced OSCC invasion, migration, and EMT via autocrine HSP27/TLR4 signaling. Collectively, HSP27/IL-6 axis facilitates OSCC chemoresistance, invasion, and migration by orchestrating macrophages through a positive feedback loop. We identify the regulatory mechanism underlying the interaction and crosstalk between OSCC cells and TAMs mediated by the HSP27/IL-6 axis. Targeting the HSP27/IL-6 axis could be a promising treatment strategy for OSCC patients, potentially controlling disease progression and improving prognosis and recurrence outcomes.
期刊介绍:
Cell Biology and Toxicology (CBT) is an international journal focused on clinical and translational research with an emphasis on molecular and cell biology, genetic and epigenetic heterogeneity, drug discovery and development, and molecular pharmacology and toxicology. CBT has a disease-specific scope prioritizing publications on gene and protein-based regulation, intracellular signaling pathway dysfunction, cell type-specific function, and systems in biomedicine in drug discovery and development. CBT publishes original articles with outstanding, innovative and significant findings, important reviews on recent research advances and issues of high current interest, opinion articles of leading edge science, and rapid communication or reports, on molecular mechanisms and therapies in diseases.