{"title":"Glial-derived TNF/Eiger signaling promotes somatosensory neurite sculpting.","authors":"Ting Zheng, Keyao Long, Su Wang, Menglong Rui","doi":"10.1007/s00018-024-05560-1","DOIUrl":null,"url":null,"abstract":"<p><p>The selective elimination of inappropriate projections is essential for sculpting neural circuits during development. The class IV dendritic arborization (C4da) sensory neurons of Drosophila remodel the dendritic branches during metamorphosis. Glial cells in the central nervous system (CNS), are required for programmed axonal pruning of mushroom body (MB) γ neurons during metamorphosis in Drosophila. However, it is entirely unknown whether the glial cells are involved in controlling the neurite pruning of C4da sensory neurons. Here, we show that glial deletion of Eiger (Egr), orthologous to mammalian tumor necrosis factor TNF superfamily ligand, results in dendrite remodeling deficiency of Drosophila C4da sensory neurons. Moreover, the attenuation of neuronal Wengen (Wgn) and Grindelwald (Grnd), the receptors for TNF ligands, is also examined for defects in dendrite remodeling. We further discover that Wgn and Grnd facilitate dendrite elimination through the JNK Signaling. Overall, our findings demonstrate that glial-derived Egr signal links to the neuronal receptor Wgn/Grnd, activating the JNK signaling pathway and promoting developmental neuronal remodeling. Remarkably, our findings reveal a crucial role of peripheral glia in dendritic pruning of C4da neurons.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"47"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11747020/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-024-05560-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The selective elimination of inappropriate projections is essential for sculpting neural circuits during development. The class IV dendritic arborization (C4da) sensory neurons of Drosophila remodel the dendritic branches during metamorphosis. Glial cells in the central nervous system (CNS), are required for programmed axonal pruning of mushroom body (MB) γ neurons during metamorphosis in Drosophila. However, it is entirely unknown whether the glial cells are involved in controlling the neurite pruning of C4da sensory neurons. Here, we show that glial deletion of Eiger (Egr), orthologous to mammalian tumor necrosis factor TNF superfamily ligand, results in dendrite remodeling deficiency of Drosophila C4da sensory neurons. Moreover, the attenuation of neuronal Wengen (Wgn) and Grindelwald (Grnd), the receptors for TNF ligands, is also examined for defects in dendrite remodeling. We further discover that Wgn and Grnd facilitate dendrite elimination through the JNK Signaling. Overall, our findings demonstrate that glial-derived Egr signal links to the neuronal receptor Wgn/Grnd, activating the JNK signaling pathway and promoting developmental neuronal remodeling. Remarkably, our findings reveal a crucial role of peripheral glia in dendritic pruning of C4da neurons.
期刊介绍:
Journal Name: Cellular and Molecular Life Sciences (CMLS)
Location: Basel, Switzerland
Focus:
Multidisciplinary journal
Publishes research articles, reviews, multi-author reviews, and visions & reflections articles
Coverage:
Latest aspects of biological and biomedical research
Areas include:
Biochemistry and molecular biology
Cell biology
Molecular and cellular aspects of biomedicine
Neuroscience
Pharmacology
Immunology
Additional Features:
Welcomes comments on any article published in CMLS
Accepts suggestions for topics to be covered