Xinying Zhang , Jiajie Xie , Zixin Yang , Carisa Kwok Wai Yu , Yaohua Hu , Jing Qin
{"title":"Tumour heterogeneity and personalized treatment screening based on single-cell transcriptomics","authors":"Xinying Zhang , Jiajie Xie , Zixin Yang , Carisa Kwok Wai Yu , Yaohua Hu , Jing Qin","doi":"10.1016/j.csbj.2024.12.020","DOIUrl":null,"url":null,"abstract":"<div><div>According to global cancer statistics for the year 2022, based on updated estimates from the International Agency for Research on Cancer, there were approximately 20 million new cases of cancer in 2022 alongside 9.7 million related deaths. Lung, breast, colorectal, gastric, and liver cancers are the most common types of cancer. Despite advancements in anticancer drugs and optimised chemotherapy regimens that have improved cure rates for malignant tumours, the presence of tumour heterogeneity has resulted in substantial variations among patients in terms of disease progression, clinical response, sensitivity to therapy, and prognosis, posing significant challenges in attaining optimal therapeutic outcomes for each patient. Here, we collected five single-cell transcriptome datasets from patients with lung, breast, colorectal, gastric, and liver cancers and constructed multiple cancer blueprints of tumour cell heterogeneity. By integrating multiple bioinformatics analyses, we explored the biological differences underlying tumour cell heterogeneity at the single-cell level and identified tumour cell subcluster-specific biomarkers and potential therapeutic drugs for each subcluster. Interestingly, although tumour cell subpopulations exhibit dramatic differences within the same cancer type and between different cancers at both the genomic and transcriptomic levels, some demonstrate similar oncogenic pathway activities and phenotypes. Tumour cell subpopulations from the five cancers listed above were classified into three major groups corresponding to different treatment strategies. The findings of this study not only focus on the differences but also on the similarities among tumour cell subpopulations across different cancers, providing new insights for individualised therapy.</div></div>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"Pages 307-320"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773088/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2001037024004409","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
According to global cancer statistics for the year 2022, based on updated estimates from the International Agency for Research on Cancer, there were approximately 20 million new cases of cancer in 2022 alongside 9.7 million related deaths. Lung, breast, colorectal, gastric, and liver cancers are the most common types of cancer. Despite advancements in anticancer drugs and optimised chemotherapy regimens that have improved cure rates for malignant tumours, the presence of tumour heterogeneity has resulted in substantial variations among patients in terms of disease progression, clinical response, sensitivity to therapy, and prognosis, posing significant challenges in attaining optimal therapeutic outcomes for each patient. Here, we collected five single-cell transcriptome datasets from patients with lung, breast, colorectal, gastric, and liver cancers and constructed multiple cancer blueprints of tumour cell heterogeneity. By integrating multiple bioinformatics analyses, we explored the biological differences underlying tumour cell heterogeneity at the single-cell level and identified tumour cell subcluster-specific biomarkers and potential therapeutic drugs for each subcluster. Interestingly, although tumour cell subpopulations exhibit dramatic differences within the same cancer type and between different cancers at both the genomic and transcriptomic levels, some demonstrate similar oncogenic pathway activities and phenotypes. Tumour cell subpopulations from the five cancers listed above were classified into three major groups corresponding to different treatment strategies. The findings of this study not only focus on the differences but also on the similarities among tumour cell subpopulations across different cancers, providing new insights for individualised therapy.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology