F.X. Doo , W.G. Naranjo , T. Kapouranis , M. Thor , M. Chao , X. Yang , D.C. Marshall
{"title":"Sex-Based Bias in Artificial Intelligence-Based Segmentation Models in Clinical Oncology","authors":"F.X. Doo , W.G. Naranjo , T. Kapouranis , M. Thor , M. Chao , X. Yang , D.C. Marshall","doi":"10.1016/j.clon.2025.103758","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial intelligence (AI) advancements have accelerated applications of imaging in clinical oncology, especially in revolutionizing the safe and accurate delivery of state-of-the-art imaging-guided radiotherapy techniques. However, concerns are growing over the potential for sex-related bias and the omission of female-specific data in multi-organ segmentation algorithm development pipelines. Opportunities exist for addressing sex-specific data as a source of bias, and improving sex inclusion to adequately inform the development of AI-based technologies to ensure their fairness, generalizability and equitable distribution. The goal of this review is to discuss the importance of biological sex for AI-based multi-organ image segmentation in routine clinical and radiation oncology; sources of sex-based bias in data generation, model building and implementation and recommendations to ensure AI equity in this rapidly evolving domain.</div></div>","PeriodicalId":10403,"journal":{"name":"Clinical oncology","volume":"39 ","pages":"Article 103758"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0936655525000135","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial intelligence (AI) advancements have accelerated applications of imaging in clinical oncology, especially in revolutionizing the safe and accurate delivery of state-of-the-art imaging-guided radiotherapy techniques. However, concerns are growing over the potential for sex-related bias and the omission of female-specific data in multi-organ segmentation algorithm development pipelines. Opportunities exist for addressing sex-specific data as a source of bias, and improving sex inclusion to adequately inform the development of AI-based technologies to ensure their fairness, generalizability and equitable distribution. The goal of this review is to discuss the importance of biological sex for AI-based multi-organ image segmentation in routine clinical and radiation oncology; sources of sex-based bias in data generation, model building and implementation and recommendations to ensure AI equity in this rapidly evolving domain.
期刊介绍:
Clinical Oncology is an International cancer journal covering all aspects of the clinical management of cancer patients, reflecting a multidisciplinary approach to therapy. Papers, editorials and reviews are published on all types of malignant disease embracing, pathology, diagnosis and treatment, including radiotherapy, chemotherapy, surgery, combined modality treatment and palliative care. Research and review papers covering epidemiology, radiobiology, radiation physics, tumour biology, and immunology are also published, together with letters to the editor, case reports and book reviews.