Chong Jiang, Chunjun Qian, Qiuhui Jiang, Hang Zhou, Zekun Jiang, Yue Teng, Bing Xu, Xin Li, Chongyang Ding, Rong Tian
{"title":"Virtual biopsy for non-invasive identification of follicular lymphoma histologic transformation using radiomics-based imaging biomarker from PET/CT.","authors":"Chong Jiang, Chunjun Qian, Qiuhui Jiang, Hang Zhou, Zekun Jiang, Yue Teng, Bing Xu, Xin Li, Chongyang Ding, Rong Tian","doi":"10.1186/s12916-025-03893-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study aimed to construct a radiomics-based imaging biomarker for the non-invasive identification of transformed follicular lymphoma (t-FL) using PET/CT images.</p><p><strong>Methods: </strong>A total of 784 follicular lymphoma (FL), diffuse large B-cell lymphoma, and t-FL patients from 5 independent medical centers were included. The unsupervised EMFusion method was applied to fuse PET and CT images. Deep-based radiomic features were extracted from the fusion images using a deep learning model (ResNet18). These features, along with handcrafted radiomics, were utilized to construct a radiomic signature (R-signature) using automatic machine learning in the training and internal validation cohort. The R-signature was then tested for its predictive ability in the t-FL test cohort. Subsequently, this R-signature was combined with clinical parameters and SUVmax to develop a t-FL scoring system.</p><p><strong>Results: </strong>The R-signature demonstrated high accuracy, with mean AUC values as 0.994 in the training cohort and 0.976 in the internal validation cohort. In the t-FL test cohort, the R-signature achieved an AUC of 0.749, with an accuracy of 75.2%, sensitivity of 68.0%, and specificity of 77.5%. Furthermore, the t-FL scoring system, incorporating the R-signature along with clinical parameters (age, LDH, and ECOG PS) and SUVmax, achieved an AUC of 0.820, facilitating the stratification of patients into low, medium, and high transformation risk groups.</p><p><strong>Conclusions: </strong>This study offers a promising approach for identifying t-FL non-invasively by radiomics analysis on PET/CT images. The developed t-FL scoring system provides a valuable tool for clinical decision-making, potentially improving patient management and outcomes.</p>","PeriodicalId":9188,"journal":{"name":"BMC Medicine","volume":"23 1","pages":"49"},"PeriodicalIF":7.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776338/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12916-025-03893-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: This study aimed to construct a radiomics-based imaging biomarker for the non-invasive identification of transformed follicular lymphoma (t-FL) using PET/CT images.
Methods: A total of 784 follicular lymphoma (FL), diffuse large B-cell lymphoma, and t-FL patients from 5 independent medical centers were included. The unsupervised EMFusion method was applied to fuse PET and CT images. Deep-based radiomic features were extracted from the fusion images using a deep learning model (ResNet18). These features, along with handcrafted radiomics, were utilized to construct a radiomic signature (R-signature) using automatic machine learning in the training and internal validation cohort. The R-signature was then tested for its predictive ability in the t-FL test cohort. Subsequently, this R-signature was combined with clinical parameters and SUVmax to develop a t-FL scoring system.
Results: The R-signature demonstrated high accuracy, with mean AUC values as 0.994 in the training cohort and 0.976 in the internal validation cohort. In the t-FL test cohort, the R-signature achieved an AUC of 0.749, with an accuracy of 75.2%, sensitivity of 68.0%, and specificity of 77.5%. Furthermore, the t-FL scoring system, incorporating the R-signature along with clinical parameters (age, LDH, and ECOG PS) and SUVmax, achieved an AUC of 0.820, facilitating the stratification of patients into low, medium, and high transformation risk groups.
Conclusions: This study offers a promising approach for identifying t-FL non-invasively by radiomics analysis on PET/CT images. The developed t-FL scoring system provides a valuable tool for clinical decision-making, potentially improving patient management and outcomes.
期刊介绍:
BMC Medicine is an open access, transparent peer-reviewed general medical journal. It is the flagship journal of the BMC series and publishes outstanding and influential research in various areas including clinical practice, translational medicine, medical and health advances, public health, global health, policy, and general topics of interest to the biomedical and sociomedical professional communities. In addition to research articles, the journal also publishes stimulating debates, reviews, unique forum articles, and concise tutorials. All articles published in BMC Medicine are included in various databases such as Biological Abstracts, BIOSIS, CAS, Citebase, Current contents, DOAJ, Embase, MEDLINE, PubMed, Science Citation Index Expanded, OAIster, SCImago, Scopus, SOCOLAR, and Zetoc.