Cryopreserved Umbilical Cord Mesenchymal Stem Cells Show Comparable Effects to Un-Cryopreserved Cells in Treating Osteoarthritis.

IF 3.2 4区 医学 Q3 CELL & TISSUE ENGINEERING
Bo Yan, Huixin Chen, Li Yan, Qiang Yuan, Le Guo
{"title":"Cryopreserved Umbilical Cord Mesenchymal Stem Cells Show Comparable Effects to Un-Cryopreserved Cells in Treating Osteoarthritis.","authors":"Bo Yan, Huixin Chen, Li Yan, Qiang Yuan, Le Guo","doi":"10.1177/09636897241297631","DOIUrl":null,"url":null,"abstract":"<p><p>Non-cryo and hypothermic preservations are two available options for short-term storage of living cells. For long-term cell storage, cryopreservation is an essential procedure as it prolongs the storage time, allowing for the transport and testing of cells, as well as the establishment of cell banks. But it is unclear whether cryopreservation reduces the therapeutic effects of human umbilical cord mesenchymal stem cells (hucMSCs) on osteoarthritis (OA). To investigate this, we compared the basic biological characteristics and the anti-OA efficacy of un-cryopreserved hucMSCs (UC-MSCs) and cryopreserved hucMSCs (C-MSCs). A mono-iodoacetate-induced rat OA model was established to evaluate the anti-OA properties of UC-MSCs and C-MSCs. And the conditioned medium of UC-MSCs (UC-CM) and cell freezing medium of C-MSCs (C-CFM) were collected for the mechanism study. No significant differences were found between UC-MSCs and C-MSCs in cell viability, immunophenotype, and trilineage differentiation capacity. In vivo, UC-MSCs and C-MSCs exhibited similar cartilage-repairing effects by attenuating pain and alleviating pathological changes in OA rat joints. In vitro, C-CFM and UC-CM promoted the proliferation of chondrocytes, improved the expression of anabolism-related molecules (<i>Col2</i>, COL2, and SOX9), and decreased the expression of catabolism-related molecules (<i>Adamts5</i>, <i>Mmp13</i>, <i>Il6</i>, COL10, and MMP13). These results indicated that UC-MSCs and C-MSCs had comparable anti-OA effects, and cryopreservation did not alter the anti-OA capability of hucMSCs, which provides further support for clinical use of C-MSCs in treating OA.</p>","PeriodicalId":9721,"journal":{"name":"Cell Transplantation","volume":"34 ","pages":"9636897241297631"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776000/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Transplantation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09636897241297631","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Non-cryo and hypothermic preservations are two available options for short-term storage of living cells. For long-term cell storage, cryopreservation is an essential procedure as it prolongs the storage time, allowing for the transport and testing of cells, as well as the establishment of cell banks. But it is unclear whether cryopreservation reduces the therapeutic effects of human umbilical cord mesenchymal stem cells (hucMSCs) on osteoarthritis (OA). To investigate this, we compared the basic biological characteristics and the anti-OA efficacy of un-cryopreserved hucMSCs (UC-MSCs) and cryopreserved hucMSCs (C-MSCs). A mono-iodoacetate-induced rat OA model was established to evaluate the anti-OA properties of UC-MSCs and C-MSCs. And the conditioned medium of UC-MSCs (UC-CM) and cell freezing medium of C-MSCs (C-CFM) were collected for the mechanism study. No significant differences were found between UC-MSCs and C-MSCs in cell viability, immunophenotype, and trilineage differentiation capacity. In vivo, UC-MSCs and C-MSCs exhibited similar cartilage-repairing effects by attenuating pain and alleviating pathological changes in OA rat joints. In vitro, C-CFM and UC-CM promoted the proliferation of chondrocytes, improved the expression of anabolism-related molecules (Col2, COL2, and SOX9), and decreased the expression of catabolism-related molecules (Adamts5, Mmp13, Il6, COL10, and MMP13). These results indicated that UC-MSCs and C-MSCs had comparable anti-OA effects, and cryopreservation did not alter the anti-OA capability of hucMSCs, which provides further support for clinical use of C-MSCs in treating OA.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Transplantation
Cell Transplantation 生物-细胞与组织工程
CiteScore
6.00
自引率
3.00%
发文量
97
审稿时长
6 months
期刊介绍: Cell Transplantation, The Regenerative Medicine Journal is an open access, peer reviewed journal that is published 12 times annually. Cell Transplantation is a multi-disciplinary forum for publication of articles on cell transplantation and its applications to human diseases. Articles focus on a myriad of topics including the physiological, medical, pre-clinical, tissue engineering, stem cell, and device-oriented aspects of the nervous, endocrine, cardiovascular, and endothelial systems, as well as genetically engineered cells. Cell Transplantation also reports on relevant technological advances, clinical studies, and regulatory considerations related to the implantation of cells into the body in order to provide complete coverage of the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信