Correcting scale distortion in RNA sequencing data.

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Christopher Thron, Farhad Jafari
{"title":"Correcting scale distortion in RNA sequencing data.","authors":"Christopher Thron, Farhad Jafari","doi":"10.1186/s12859-025-06041-3","DOIUrl":null,"url":null,"abstract":"<p><p>RNA sequencing (RNA-seq) is the conventional genome-scale approach used to capture the expression levels of all detectable genes in a biological sample. This is now regularly used for population-based studies designed to identify genetic determinants of various diseases. Naturally, the accuracy of these tests should be verified and improved if possible. In this study, we aimed to detect and correct for expression level-dependent errors which are not corrected by conventional normalization techniques. We examined several RNA-seq datasets from the Cancer Genome Atlas (TCGA), Stand Up 2 Cancer (SU2C), and GTEx databases with various types of preprocessing. By applying local averaging, we found expression-level dependent biases that differ from sample to sample in all datasets studied. Using simulations, we show that these biases corrupt gene-gene correlation estimations and t tests between subpopulations. To mitigate these biases, we introduce two different nonlinear transforms based on statistical considerations that correct these observed biases. We demonstrate that these transforms effectively remove the observed per-sample biases, reduce sample-to-sample variance, and improve the characteristics of gene-gene correlation distributions. Using a novel simulation methodology that creates controlled differences between subpopulations, we show that these transforms reduce variability and increase sensitivity of two population tests. The improvements in sensitivity and specificity were of the order of 3-5% in most instances after the data was corrected for bias. Altogether, these results improve our capacity to understand gene-gene relationships, and may lead to novel ways to utilize the information derived from clinical tests.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"32"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776150/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06041-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

RNA sequencing (RNA-seq) is the conventional genome-scale approach used to capture the expression levels of all detectable genes in a biological sample. This is now regularly used for population-based studies designed to identify genetic determinants of various diseases. Naturally, the accuracy of these tests should be verified and improved if possible. In this study, we aimed to detect and correct for expression level-dependent errors which are not corrected by conventional normalization techniques. We examined several RNA-seq datasets from the Cancer Genome Atlas (TCGA), Stand Up 2 Cancer (SU2C), and GTEx databases with various types of preprocessing. By applying local averaging, we found expression-level dependent biases that differ from sample to sample in all datasets studied. Using simulations, we show that these biases corrupt gene-gene correlation estimations and t tests between subpopulations. To mitigate these biases, we introduce two different nonlinear transforms based on statistical considerations that correct these observed biases. We demonstrate that these transforms effectively remove the observed per-sample biases, reduce sample-to-sample variance, and improve the characteristics of gene-gene correlation distributions. Using a novel simulation methodology that creates controlled differences between subpopulations, we show that these transforms reduce variability and increase sensitivity of two population tests. The improvements in sensitivity and specificity were of the order of 3-5% in most instances after the data was corrected for bias. Altogether, these results improve our capacity to understand gene-gene relationships, and may lead to novel ways to utilize the information derived from clinical tests.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信