Performance analysis of a deep-learning algorithm to detect the presence of inflammation in MRI of sacroiliac joints in patients with axial spondyloarthritis.

IF 20.3 1区 医学 Q1 RHEUMATOLOGY
Annals of the Rheumatic Diseases Pub Date : 2025-01-01 Epub Date: 2025-01-02 DOI:10.1136/ard-2024-225862
Joeri Nicolaes, Evi Tselenti, Theodore Aouad, Clementina López-Medina, Antoine Feydy, Hugues Talbot, Bengt Hoepken, Natasha de Peyrecave, Maxime Dougados
{"title":"Performance analysis of a deep-learning algorithm to detect the presence of inflammation in MRI of sacroiliac joints in patients with axial spondyloarthritis.","authors":"Joeri Nicolaes, Evi Tselenti, Theodore Aouad, Clementina López-Medina, Antoine Feydy, Hugues Talbot, Bengt Hoepken, Natasha de Peyrecave, Maxime Dougados","doi":"10.1136/ard-2024-225862","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To assess the ability of a previously trained deep-learning algorithm to identify the presence of inflammation on MRI of sacroiliac joints (SIJ) in a large external validation set of patients with axial spondyloarthritis (axSpA).</p><p><strong>Methods: </strong>Baseline SIJ MRI scans were collected from two prospective randomised controlled trials in patients with non-radiographic (nr-) and radiographic (r-) axSpA (RAPID-axSpA: NCT01087762 and C-OPTIMISE: NCT02505542) and were centrally evaluated by two expert readers (and adjudicator in case of disagreement) for the presence of inflammation by the 2009 Assessment of SpondyloArthritis International Society (ASAS) definition. Scans were processed by the deep-learning algorithm, blinded to clinical information and central expert readings.</p><p><strong>Results: </strong>Pooling the patients from RAPID-axSpA (n=152) and C-OPTIMISE (n=579) yielded a validation set of 731 patients (mean age: 34.2 years, SD: 8.6; 505/731 (69.1%) male), of which 326/731 (44.6%) had nr-axSpA and 436/731 (59.6%) had inflammation on MRI per central readings. Scans were obtained from over 30 scanners from 5 manufacturers across over 100 clinical sites. Comparing the trained algorithm with the human central readings yielded a sensitivity of 70% (95% CI 66% to 73%), specificity of 81% (95% CI 78% to 84%), positive predictive value of 84% (95% CI 82% to 87%), negative predictive value of 64% (95% CI 61% to 68%), Cohen's kappa of 0.49 (95% CI 0.43 to 0.55) and absolute agreement of 74% (95% CI 72% to 77%).</p><p><strong>Conclusion: </strong>The algorithm enabled acceptable detection of inflammation according to the 2009 ASAS MRI definition in a large external validation cohort.</p>","PeriodicalId":8087,"journal":{"name":"Annals of the Rheumatic Diseases","volume":"84 1","pages":"60-67"},"PeriodicalIF":20.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Rheumatic Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/ard-2024-225862","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RHEUMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: To assess the ability of a previously trained deep-learning algorithm to identify the presence of inflammation on MRI of sacroiliac joints (SIJ) in a large external validation set of patients with axial spondyloarthritis (axSpA).

Methods: Baseline SIJ MRI scans were collected from two prospective randomised controlled trials in patients with non-radiographic (nr-) and radiographic (r-) axSpA (RAPID-axSpA: NCT01087762 and C-OPTIMISE: NCT02505542) and were centrally evaluated by two expert readers (and adjudicator in case of disagreement) for the presence of inflammation by the 2009 Assessment of SpondyloArthritis International Society (ASAS) definition. Scans were processed by the deep-learning algorithm, blinded to clinical information and central expert readings.

Results: Pooling the patients from RAPID-axSpA (n=152) and C-OPTIMISE (n=579) yielded a validation set of 731 patients (mean age: 34.2 years, SD: 8.6; 505/731 (69.1%) male), of which 326/731 (44.6%) had nr-axSpA and 436/731 (59.6%) had inflammation on MRI per central readings. Scans were obtained from over 30 scanners from 5 manufacturers across over 100 clinical sites. Comparing the trained algorithm with the human central readings yielded a sensitivity of 70% (95% CI 66% to 73%), specificity of 81% (95% CI 78% to 84%), positive predictive value of 84% (95% CI 82% to 87%), negative predictive value of 64% (95% CI 61% to 68%), Cohen's kappa of 0.49 (95% CI 0.43 to 0.55) and absolute agreement of 74% (95% CI 72% to 77%).

Conclusion: The algorithm enabled acceptable detection of inflammation according to the 2009 ASAS MRI definition in a large external validation cohort.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of the Rheumatic Diseases
Annals of the Rheumatic Diseases 医学-风湿病学
CiteScore
35.00
自引率
9.90%
发文量
3728
审稿时长
1.4 months
期刊介绍: Annals of the Rheumatic Diseases (ARD) is an international peer-reviewed journal covering all aspects of rheumatology, which includes the full spectrum of musculoskeletal conditions, arthritic disease, and connective tissue disorders. ARD publishes basic, clinical, and translational scientific research, including the most important recommendations for the management of various conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信