Deep learning aided determination of the optimal number of detectors for photoacoustic tomography.

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Sudeep Mondal, Subhadip Paul, Navjot Singh, Pankaj Warbal, Zartab Khanam, Ratan K Saha
{"title":"Deep learning aided determination of the optimal number of detectors for photoacoustic tomography.","authors":"Sudeep Mondal, Subhadip Paul, Navjot Singh, Pankaj Warbal, Zartab Khanam, Ratan K Saha","doi":"10.1088/2057-1976/adaf29","DOIUrl":null,"url":null,"abstract":"<p><p>Photoacoustic tomography (PAT) is a non-destructive, non-ionizing, and rapidly expanding hybrid biomedical imaging technique, yet it faces challenges in obtaining clear images due to limited data from detectors or angles. As a result, the methodology suffers from significant streak artifacts and low-quality images. The integration of deep learning (DL), specifically convolutional neural networks (CNNs), has recently demonstrated powerful performance in various fields of PAT. This work introduces a post-processing-based CNN architecture named residual-dense UNet (RDUNet) to address the stride artifacts in reconstructed PA images. The framework adopts the benefits of residual and dense blocks to form high-resolution reconstructed images. The network is trained with two different types of datasets to learn the relationship between the reconstructed images and their corresponding ground truths (GTs). In the first protocol, RDUNet (identified as RDUNet I) underwent training on heterogeneous simulated images featuring three distinct phantom types. Subsequently, in the second protocol, RDUNet (referred to as RDUNet II) was trained on a heterogeneous composition of 81% simulated data and 19% experimental data. The motivation behind this is to allow the network to adapt to diverse experimental challenges. The RDUNet algorithm was validated by performing numerical and experimental studies involving single-disk, T-shape, and vasculature phantoms. The performance of this protocol was compared with the famous backprojection (BP) and the traditional UNet algorithms. This study shows that RDUNet can substantially reduce the number of detectors from 100 to 25 for simulated testing images and 30 for experimental scenarios.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/adaf29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Photoacoustic tomography (PAT) is a non-destructive, non-ionizing, and rapidly expanding hybrid biomedical imaging technique, yet it faces challenges in obtaining clear images due to limited data from detectors or angles. As a result, the methodology suffers from significant streak artifacts and low-quality images. The integration of deep learning (DL), specifically convolutional neural networks (CNNs), has recently demonstrated powerful performance in various fields of PAT. This work introduces a post-processing-based CNN architecture named residual-dense UNet (RDUNet) to address the stride artifacts in reconstructed PA images. The framework adopts the benefits of residual and dense blocks to form high-resolution reconstructed images. The network is trained with two different types of datasets to learn the relationship between the reconstructed images and their corresponding ground truths (GTs). In the first protocol, RDUNet (identified as RDUNet I) underwent training on heterogeneous simulated images featuring three distinct phantom types. Subsequently, in the second protocol, RDUNet (referred to as RDUNet II) was trained on a heterogeneous composition of 81% simulated data and 19% experimental data. The motivation behind this is to allow the network to adapt to diverse experimental challenges. The RDUNet algorithm was validated by performing numerical and experimental studies involving single-disk, T-shape, and vasculature phantoms. The performance of this protocol was compared with the famous backprojection (BP) and the traditional UNet algorithms. This study shows that RDUNet can substantially reduce the number of detectors from 100 to 25 for simulated testing images and 30 for experimental scenarios.

深度学习辅助确定光声断层成像探测器的最佳数量。
光声断层扫描(PAT)是一种非破坏性、非电离、快速发展的混合生物医学成像技术,但由于探测器或角度的数据有限,它在获得清晰图像方面面临挑战。结果,该方法受到显著条纹伪影和低质量图像的影响。深度学习(DL)的集成,特别是卷积神经网络(cnn),最近在PAT的各个领域展示了强大的性能。这项工作引入了一种基于后处理的CNN架构,称为残差密集UNet (RDUNet),以解决重建PA图像中的跨步伪影。该框架利用残差和密集块的优点,形成高分辨率的重建图像。该网络使用两种不同类型的数据集进行训练,以学习重建图像与其相应的ground truth (gt)之间的关系。在第一个协议中,RDUNet(被确定为RDUNet I)在具有三种不同幻影类型的异构模拟图像上进行训练。随后,在第二个方案中,RDUNet(称为RDUNet II)在81%模拟数据和19%实验数据的异构组成上进行训练。这背后的动机是允许网络适应不同的实验挑战。RDUNet算法通过执行涉及单盘、t形和脉管系统幻象的数值和实验研究进行了验证。将该协议的性能与著名的反向投影(BP)算法和传统的UNet算法进行了比较。本研究表明,RDUNet可以将模拟测试图像的检测器数量从100个大幅减少到25个,实验场景的检测器数量为30个。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信