Anik Chaturbedi, John Mann, Shilpa Chakravartula, Bradlee Thrasher, Ghazal Arabidarrehdor, Joel Zirkle, Hamed Meshkin, Srikanth C. Nallani, Jeffry Florian, Zhihua Li
{"title":"Toward Developing Alternative Opioid Antagonists for Treating Community Overdose: A Model-Based Evaluation of Important Pharmacological Attributes","authors":"Anik Chaturbedi, John Mann, Shilpa Chakravartula, Bradlee Thrasher, Ghazal Arabidarrehdor, Joel Zirkle, Hamed Meshkin, Srikanth C. Nallani, Jeffry Florian, Zhihua Li","doi":"10.1002/cpt.3527","DOIUrl":null,"url":null,"abstract":"<p>In response to increased illicit use of synthetic opioids, various μ-receptor antagonist formulations, with varied pharmacological characteristics, have been and are being developed. To understand how pharmacologic characteristics such as absorption rate and clearance rate affect reversal in treating community opioid overdose, we used our previously published translational opioid model. We adapted this model with <i>in vitro</i> receptor binding data and clinical pharmacokinetic data of three intranasal nalmefene formulations along with an intranasal naloxone formulation to study the reversal of fentanyl and carfentanil-induced respiratory depression in chronic opioid users. Nalmefene has a longer plasma half-life and slower unbinding from the μ-receptor compared to naloxone. For a more rapid reversal of acute overdose-induced respiratory depression, a fast-absorbing antagonist formulation may be of greater utility than a slow-absorbing one containing the same dosage of the antagonist. For preventing renarcotization caused by a long opioid exposure, a slow-clearing antagonist with slow unbinding from the receptor may be of value. While a more potent antagonist with a longer half-life may have the potential to facilitate recovery from respiratory depression for overdose with synthetic opioids, such interventions may also lead to longer and more pronounced withdrawal. This emphasizes the need for a nuanced consideration of several facets while choosing a μ-receptor antagonist, dose, and formulation to treat community opioid overdose cases.</p>","PeriodicalId":153,"journal":{"name":"Clinical Pharmacology & Therapeutics","volume":"117 3","pages":"836-845"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Pharmacology & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpt.3527","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
In response to increased illicit use of synthetic opioids, various μ-receptor antagonist formulations, with varied pharmacological characteristics, have been and are being developed. To understand how pharmacologic characteristics such as absorption rate and clearance rate affect reversal in treating community opioid overdose, we used our previously published translational opioid model. We adapted this model with in vitro receptor binding data and clinical pharmacokinetic data of three intranasal nalmefene formulations along with an intranasal naloxone formulation to study the reversal of fentanyl and carfentanil-induced respiratory depression in chronic opioid users. Nalmefene has a longer plasma half-life and slower unbinding from the μ-receptor compared to naloxone. For a more rapid reversal of acute overdose-induced respiratory depression, a fast-absorbing antagonist formulation may be of greater utility than a slow-absorbing one containing the same dosage of the antagonist. For preventing renarcotization caused by a long opioid exposure, a slow-clearing antagonist with slow unbinding from the receptor may be of value. While a more potent antagonist with a longer half-life may have the potential to facilitate recovery from respiratory depression for overdose with synthetic opioids, such interventions may also lead to longer and more pronounced withdrawal. This emphasizes the need for a nuanced consideration of several facets while choosing a μ-receptor antagonist, dose, and formulation to treat community opioid overdose cases.
期刊介绍:
Clinical Pharmacology & Therapeutics (CPT) is the authoritative cross-disciplinary journal in experimental and clinical medicine devoted to publishing advances in the nature, action, efficacy, and evaluation of therapeutics. CPT welcomes original Articles in the emerging areas of translational, predictive and personalized medicine; new therapeutic modalities including gene and cell therapies; pharmacogenomics, proteomics and metabolomics; bioinformation and applied systems biology complementing areas of pharmacokinetics and pharmacodynamics, human investigation and clinical trials, pharmacovigilence, pharmacoepidemiology, pharmacometrics, and population pharmacology.