Toward Developing Alternative Opioid Antagonists for Treating Community Overdose: A Model-Based Evaluation of Important Pharmacological Attributes

IF 6.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Anik Chaturbedi, John Mann, Shilpa Chakravartula, Bradlee Thrasher, Ghazal Arabidarrehdor, Joel Zirkle, Hamed Meshkin, Srikanth C. Nallani, Jeffry Florian, Zhihua Li
{"title":"Toward Developing Alternative Opioid Antagonists for Treating Community Overdose: A Model-Based Evaluation of Important Pharmacological Attributes","authors":"Anik Chaturbedi,&nbsp;John Mann,&nbsp;Shilpa Chakravartula,&nbsp;Bradlee Thrasher,&nbsp;Ghazal Arabidarrehdor,&nbsp;Joel Zirkle,&nbsp;Hamed Meshkin,&nbsp;Srikanth C. Nallani,&nbsp;Jeffry Florian,&nbsp;Zhihua Li","doi":"10.1002/cpt.3527","DOIUrl":null,"url":null,"abstract":"<p>In response to increased illicit use of synthetic opioids, various μ-receptor antagonist formulations, with varied pharmacological characteristics, have been and are being developed. To understand how pharmacologic characteristics such as absorption rate and clearance rate affect reversal in treating community opioid overdose, we used our previously published translational opioid model. We adapted this model with <i>in vitro</i> receptor binding data and clinical pharmacokinetic data of three intranasal nalmefene formulations along with an intranasal naloxone formulation to study the reversal of fentanyl and carfentanil-induced respiratory depression in chronic opioid users. Nalmefene has a longer plasma half-life and slower unbinding from the μ-receptor compared to naloxone. For a more rapid reversal of acute overdose-induced respiratory depression, a fast-absorbing antagonist formulation may be of greater utility than a slow-absorbing one containing the same dosage of the antagonist. For preventing renarcotization caused by a long opioid exposure, a slow-clearing antagonist with slow unbinding from the receptor may be of value. While a more potent antagonist with a longer half-life may have the potential to facilitate recovery from respiratory depression for overdose with synthetic opioids, such interventions may also lead to longer and more pronounced withdrawal. This emphasizes the need for a nuanced consideration of several facets while choosing a μ-receptor antagonist, dose, and formulation to treat community opioid overdose cases.</p>","PeriodicalId":153,"journal":{"name":"Clinical Pharmacology & Therapeutics","volume":"117 3","pages":"836-845"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Pharmacology & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpt.3527","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

In response to increased illicit use of synthetic opioids, various μ-receptor antagonist formulations, with varied pharmacological characteristics, have been and are being developed. To understand how pharmacologic characteristics such as absorption rate and clearance rate affect reversal in treating community opioid overdose, we used our previously published translational opioid model. We adapted this model with in vitro receptor binding data and clinical pharmacokinetic data of three intranasal nalmefene formulations along with an intranasal naloxone formulation to study the reversal of fentanyl and carfentanil-induced respiratory depression in chronic opioid users. Nalmefene has a longer plasma half-life and slower unbinding from the μ-receptor compared to naloxone. For a more rapid reversal of acute overdose-induced respiratory depression, a fast-absorbing antagonist formulation may be of greater utility than a slow-absorbing one containing the same dosage of the antagonist. For preventing renarcotization caused by a long opioid exposure, a slow-clearing antagonist with slow unbinding from the receptor may be of value. While a more potent antagonist with a longer half-life may have the potential to facilitate recovery from respiratory depression for overdose with synthetic opioids, such interventions may also lead to longer and more pronounced withdrawal. This emphasizes the need for a nuanced consideration of several facets while choosing a μ-receptor antagonist, dose, and formulation to treat community opioid overdose cases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.70
自引率
7.50%
发文量
290
审稿时长
2 months
期刊介绍: Clinical Pharmacology & Therapeutics (CPT) is the authoritative cross-disciplinary journal in experimental and clinical medicine devoted to publishing advances in the nature, action, efficacy, and evaluation of therapeutics. CPT welcomes original Articles in the emerging areas of translational, predictive and personalized medicine; new therapeutic modalities including gene and cell therapies; pharmacogenomics, proteomics and metabolomics; bioinformation and applied systems biology complementing areas of pharmacokinetics and pharmacodynamics, human investigation and clinical trials, pharmacovigilence, pharmacoepidemiology, pharmacometrics, and population pharmacology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信