{"title":"Chiral Primary Amine-Catalyzed Asymmetric Photochemical Reactions of Pyridotriazoles with Boronic Acids to Access Triarylmethanes","authors":"Chenyang Jiang, Youlan Meng, Yinwa Huang, Chan Liu, Yanli Yin, Xiaowei Zhao, Shanshan Cao, Zhiyong Jiang","doi":"10.1021/jacs.4c16811","DOIUrl":null,"url":null,"abstract":"Imine-containing azaarene-based triarylmethanes are vital molecular motifs that are prevalent in a wide array of bioactive compounds. Recognizing the limitations of current synthetic methodologies─marked by a scarcity of examples and difficulties in flexible functional group modulation─we have developed an efficient and modular asymmetric photochemical strategy employing pyridotriazoles and boronic acids as substrates. Utilizing novel chiral diamine-derived pyrroles and primary amines as catalysts, we successfully synthesized a diverse range of triarylmethanes with high yields and excellent enantioselectivities. This method not only exhibits a broad substrate scope and outstanding functional group tolerance but also enables the precise synthesis of deuterated derivatives using inexpensive D<sub>2</sub>O as the deuterium source. Mechanistic studies reveal that an unusual 1,4-boron shift is a critical step in generating the boronated enamine intermediate, while also shedding light on the potential enantiocontrol mechanisms facilitated by the chiral catalyst.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"36 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c16811","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Imine-containing azaarene-based triarylmethanes are vital molecular motifs that are prevalent in a wide array of bioactive compounds. Recognizing the limitations of current synthetic methodologies─marked by a scarcity of examples and difficulties in flexible functional group modulation─we have developed an efficient and modular asymmetric photochemical strategy employing pyridotriazoles and boronic acids as substrates. Utilizing novel chiral diamine-derived pyrroles and primary amines as catalysts, we successfully synthesized a diverse range of triarylmethanes with high yields and excellent enantioselectivities. This method not only exhibits a broad substrate scope and outstanding functional group tolerance but also enables the precise synthesis of deuterated derivatives using inexpensive D2O as the deuterium source. Mechanistic studies reveal that an unusual 1,4-boron shift is a critical step in generating the boronated enamine intermediate, while also shedding light on the potential enantiocontrol mechanisms facilitated by the chiral catalyst.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.