Hyperspectral Image Classification via Cascaded Spatial Cross-Attention Network

Bo Zhang;Yaxiong Chen;Shengwu Xiong;Xiaoqiang Lu
{"title":"Hyperspectral Image Classification via Cascaded Spatial Cross-Attention Network","authors":"Bo Zhang;Yaxiong Chen;Shengwu Xiong;Xiaoqiang Lu","doi":"10.1109/TIP.2025.3533205","DOIUrl":null,"url":null,"abstract":"In hyperspectral images (HSIs), different land cover (LC) classes have distinct reflective characteristics at various wavelengths. Therefore, relying on only a few bands to distinguish all LC classes often leads to information loss, resulting in poor average accuracy. To address this problem, we propose a method called Cascaded Spatial Cross-Attention Network (CSCANet) for HSI classification. We design a cascaded spatial cross-attention module, which first performs cross-attention on local and global features in the spatial context, then uses a group cascade structure to sequentially propagate important spatial regions within the different channels, and finally obtains joint attention features to improve the robustness of the network. Moreover, we also design a two-branch feature separation structure based on spatial-spectral features to separate different LC Tokens as much as possible, thereby improving the distinguishability of different LC classes. Extensive experiments demonstrate that our method achieves excellent performance in enhancing classification accuracy and robustness. The source code can be obtained from <uri>https://github.com/WUTCM-Lab/CSCANet</uri>.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"899-913"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10857952/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In hyperspectral images (HSIs), different land cover (LC) classes have distinct reflective characteristics at various wavelengths. Therefore, relying on only a few bands to distinguish all LC classes often leads to information loss, resulting in poor average accuracy. To address this problem, we propose a method called Cascaded Spatial Cross-Attention Network (CSCANet) for HSI classification. We design a cascaded spatial cross-attention module, which first performs cross-attention on local and global features in the spatial context, then uses a group cascade structure to sequentially propagate important spatial regions within the different channels, and finally obtains joint attention features to improve the robustness of the network. Moreover, we also design a two-branch feature separation structure based on spatial-spectral features to separate different LC Tokens as much as possible, thereby improving the distinguishability of different LC classes. Extensive experiments demonstrate that our method achieves excellent performance in enhancing classification accuracy and robustness. The source code can be obtained from https://github.com/WUTCM-Lab/CSCANet.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信