Self-Supervised Monocular Depth Estimation With Dual-Path Encoders and Offset Field Interpolation

Cheng Feng;Congxuan Zhang;Zhen Chen;Weiming Hu;Ke Lu;Liyue Ge
{"title":"Self-Supervised Monocular Depth Estimation With Dual-Path Encoders and Offset Field Interpolation","authors":"Cheng Feng;Congxuan Zhang;Zhen Chen;Weiming Hu;Ke Lu;Liyue Ge","doi":"10.1109/TIP.2025.3533207","DOIUrl":null,"url":null,"abstract":"Although self-supervised learning approaches have demonstrated tremendous potential in multi-frame depth estimation scenarios, existing methods struggle to perform well in cases involving dynamic targets and static ego-camera conditions. To address this issue, we propose a self-supervised monocular depth estimation method featuring dual-path encoders and learnable offset interpolation (LOI). First, we construct a dual-path encoding scheme that utilizes residual and transformer blocks to extract both single- and multi-frame features from the input frames. We design a contrastive learning strategy to effectively decouple single- and multi-frame features, enabling weighted fusion guided by a confidence map. Next, we explore two distinct decoding heads for simultaneously generating low-resolution predictions and offset fields. We then design an LOI module to directly upsample a low-resolution depth map to a full-resolution map. This one-step decoding framework enables accurate and efficient depth prediction. Finally, we evaluate our proposed method on the KITTI and Cityscapes benchmarks, conducting a comprehensive comparison with state-of-the-art approaches. The experimental results demonstrate that our DualDepth method achieves competitive performance in terms of both estimation accuracy and efficiency.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"939-954"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10857948/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Although self-supervised learning approaches have demonstrated tremendous potential in multi-frame depth estimation scenarios, existing methods struggle to perform well in cases involving dynamic targets and static ego-camera conditions. To address this issue, we propose a self-supervised monocular depth estimation method featuring dual-path encoders and learnable offset interpolation (LOI). First, we construct a dual-path encoding scheme that utilizes residual and transformer blocks to extract both single- and multi-frame features from the input frames. We design a contrastive learning strategy to effectively decouple single- and multi-frame features, enabling weighted fusion guided by a confidence map. Next, we explore two distinct decoding heads for simultaneously generating low-resolution predictions and offset fields. We then design an LOI module to directly upsample a low-resolution depth map to a full-resolution map. This one-step decoding framework enables accurate and efficient depth prediction. Finally, we evaluate our proposed method on the KITTI and Cityscapes benchmarks, conducting a comprehensive comparison with state-of-the-art approaches. The experimental results demonstrate that our DualDepth method achieves competitive performance in terms of both estimation accuracy and efficiency.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信