{"title":"Temperature-induced swelling and unwinding of double-stranded DNA","authors":"Tingting Liu, Kai Liu, Xuankang Mou, Shiben Li","doi":"10.1039/d4cp04425h","DOIUrl":null,"url":null,"abstract":"We utilized all-atom molecular dynamics simulations to investigate the temperature-induced swelling and unwinding of double-stranded DNA (dsDNA). We adopted three helical parameters, specifically helical twist, helical rise, and diameter, to quantitatively describe the deformations and elastic properties associated with swelling and unwinding processes within an orthogonal cylindrical coordinate system. The results indicate that as temperature increases, dsDNA experiences a weak swelling accompanied by unwinding. This is associated with a slight increase in helical rise, while the helical diameter almost remains unchanged and the helical twist decreases. We evaluated all potential pathways for unwinding and elucidated that twist-diameter coupling drives the unwinding from an entropy perspective. On the other hand, we employed the rigid base pair model to examine the swelling and unwinding elasticities, with a focus on the stiffnesses of twist and diameter. The results suggest that the temperature induces variations in the local twist and diameter elasticities, as well as their couplings of dsDNA, which are closely related to the distance between the base pairs, attributed to its thermal fluctuations and correlations. The global twist elasticity reduces as the temperature rises; nonetheless, the global diameter elasticity and the twist-diameter coupling can be considered as constants, which indicate independence from the increasing temperature.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"26 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cp04425h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We utilized all-atom molecular dynamics simulations to investigate the temperature-induced swelling and unwinding of double-stranded DNA (dsDNA). We adopted three helical parameters, specifically helical twist, helical rise, and diameter, to quantitatively describe the deformations and elastic properties associated with swelling and unwinding processes within an orthogonal cylindrical coordinate system. The results indicate that as temperature increases, dsDNA experiences a weak swelling accompanied by unwinding. This is associated with a slight increase in helical rise, while the helical diameter almost remains unchanged and the helical twist decreases. We evaluated all potential pathways for unwinding and elucidated that twist-diameter coupling drives the unwinding from an entropy perspective. On the other hand, we employed the rigid base pair model to examine the swelling and unwinding elasticities, with a focus on the stiffnesses of twist and diameter. The results suggest that the temperature induces variations in the local twist and diameter elasticities, as well as their couplings of dsDNA, which are closely related to the distance between the base pairs, attributed to its thermal fluctuations and correlations. The global twist elasticity reduces as the temperature rises; nonetheless, the global diameter elasticity and the twist-diameter coupling can be considered as constants, which indicate independence from the increasing temperature.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.