Leszek P Pryszcz, Gregor Diensthuber, Laia Llovera, Rebeca Medina, Anna Delgado-Tejedor, Luca Cozzuto, Julia Ponomarenko, Eva Maria Novoa
{"title":"Rapid and accurate demultiplexing of direct RNA nanopore sequencing datasets with SeqTagger","authors":"Leszek P Pryszcz, Gregor Diensthuber, Laia Llovera, Rebeca Medina, Anna Delgado-Tejedor, Luca Cozzuto, Julia Ponomarenko, Eva Maria Novoa","doi":"10.1101/gr.279290.124","DOIUrl":null,"url":null,"abstract":"Nanopore direct RNA sequencing (DRS) enables direct measurement of RNA molecules, including their native RNA modifications, without prior conversion to cDNA. However, commercial methods for molecular barcoding of multiple DRS samples are lacking, and community-driven efforts, such as DeePlexiCon, are not compatible with newer RNA chemistry flowcells and the latest-generation GPU cards. To overcome these limitations, we introduce SeqTagger, a rapid and robust method that can demultiplex direct RNA sequencing datasets with 99% precision and 95% recall. We demonstrate the applicability of SeqTagger in both RNA002/R9.4 and RNA004/RNA chemistries and show its robust performance both for long and short RNA libraries, including custom libraries that do not contain standard poly(A) tails, such as Nano-tRNAseq libraries. Finally, we demonstrate that increasing the multiplexing up to 96 barcodes yields highly accurate demultiplexing models. SeqTagger can be executed in a standalone manner or through the MasterOfPores NextFlow workflow. The availability of an efficient and simple multiplexing strategy improves the cost-effectiveness of this technology and facilitates the analysis of low-input biological samples.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"29 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.279290.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanopore direct RNA sequencing (DRS) enables direct measurement of RNA molecules, including their native RNA modifications, without prior conversion to cDNA. However, commercial methods for molecular barcoding of multiple DRS samples are lacking, and community-driven efforts, such as DeePlexiCon, are not compatible with newer RNA chemistry flowcells and the latest-generation GPU cards. To overcome these limitations, we introduce SeqTagger, a rapid and robust method that can demultiplex direct RNA sequencing datasets with 99% precision and 95% recall. We demonstrate the applicability of SeqTagger in both RNA002/R9.4 and RNA004/RNA chemistries and show its robust performance both for long and short RNA libraries, including custom libraries that do not contain standard poly(A) tails, such as Nano-tRNAseq libraries. Finally, we demonstrate that increasing the multiplexing up to 96 barcodes yields highly accurate demultiplexing models. SeqTagger can be executed in a standalone manner or through the MasterOfPores NextFlow workflow. The availability of an efficient and simple multiplexing strategy improves the cost-effectiveness of this technology and facilitates the analysis of low-input biological samples.
期刊介绍:
Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine.
Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.
New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.