Targeting ABCD1-ACOX1-MET/IGF1R axis suppresses multiple myeloma

IF 12.8 1区 医学 Q1 HEMATOLOGY
Zhannan Han, Zhibo Yan, Zhehan Ma, Yihui Wang, Maja Beus, Junqi Lu, Loren B. Weidenhammer, Kiran Lakhani, Jingyun Lee, John D. Civils, Cristina M. Furdui, Liang Liu, Jian Wu, Yubin Kang, Erhard Bieberich, Lawrence H. Boise, Mikhail A. Nikiforov
{"title":"Targeting ABCD1-ACOX1-MET/IGF1R axis suppresses multiple myeloma","authors":"Zhannan Han, Zhibo Yan, Zhehan Ma, Yihui Wang, Maja Beus, Junqi Lu, Loren B. Weidenhammer, Kiran Lakhani, Jingyun Lee, John D. Civils, Cristina M. Furdui, Liang Liu, Jian Wu, Yubin Kang, Erhard Bieberich, Lawrence H. Boise, Mikhail A. Nikiforov","doi":"10.1038/s41375-025-02522-9","DOIUrl":null,"url":null,"abstract":"<p>Multiple myeloma (MM) remains an incurable hematological malignancy that necessitates the identification of novel therapeutic strategies. Here, we report that intracellular levels of very long chain fatty acids (VLCFAs) control the cytotoxicity of MM chemotherapeutic agents. Inhibition of VLCFA biosynthesis reduced cell death in MM cells caused by the proteasome inhibitor, bortezomib. Conversely, inhibition of VLCFA degradation via suppression of peroxisomal acyl-CoA oxidase 1 (ACOX1) increased the cytotoxicity of bortezomib, its next-generation analog, carfilzomib, and the immunomodulatory agent lenalidomide. Furthermore, treatment with an orally available ACOX1 inhibitor cooperated with bortezomib in suppressing the growth of bortezomib-resistant MM xenografts in mice. Increased VLCFA levels caused by genetic or pharmacological inhibition of VLCFA degradation reduced the activity of two major kinases involved in MM pathogenesis, MET proto-oncogene (MET) and insulin-like growth factor 1 receptor (IGF1R). Mechanistically, inhibition of ACOX1 promoted the accumulation of VLCFA-containing cerebrosides, altered MET and IGF1R interaction with a cerebroside analog, and selectively inhibited the association of these kinases with the plasma membrane signaling platforms, importantly, without disrupting the platforms’ integrity. Our study revealed a specific metabolic vulnerability of MM cells and identified a targetable axis linking VLCFA metabolism to the regulation of MET and IGF1R activity.</p>","PeriodicalId":18109,"journal":{"name":"Leukemia","volume":"26 1","pages":""},"PeriodicalIF":12.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leukemia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41375-025-02522-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple myeloma (MM) remains an incurable hematological malignancy that necessitates the identification of novel therapeutic strategies. Here, we report that intracellular levels of very long chain fatty acids (VLCFAs) control the cytotoxicity of MM chemotherapeutic agents. Inhibition of VLCFA biosynthesis reduced cell death in MM cells caused by the proteasome inhibitor, bortezomib. Conversely, inhibition of VLCFA degradation via suppression of peroxisomal acyl-CoA oxidase 1 (ACOX1) increased the cytotoxicity of bortezomib, its next-generation analog, carfilzomib, and the immunomodulatory agent lenalidomide. Furthermore, treatment with an orally available ACOX1 inhibitor cooperated with bortezomib in suppressing the growth of bortezomib-resistant MM xenografts in mice. Increased VLCFA levels caused by genetic or pharmacological inhibition of VLCFA degradation reduced the activity of two major kinases involved in MM pathogenesis, MET proto-oncogene (MET) and insulin-like growth factor 1 receptor (IGF1R). Mechanistically, inhibition of ACOX1 promoted the accumulation of VLCFA-containing cerebrosides, altered MET and IGF1R interaction with a cerebroside analog, and selectively inhibited the association of these kinases with the plasma membrane signaling platforms, importantly, without disrupting the platforms’ integrity. Our study revealed a specific metabolic vulnerability of MM cells and identified a targetable axis linking VLCFA metabolism to the regulation of MET and IGF1R activity.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Leukemia
Leukemia 医学-血液学
CiteScore
18.10
自引率
3.50%
发文量
270
审稿时长
3-6 weeks
期刊介绍: Title: Leukemia Journal Overview: Publishes high-quality, peer-reviewed research Covers all aspects of research and treatment of leukemia and allied diseases Includes studies of normal hemopoiesis due to comparative relevance Topics of Interest: Oncogenes Growth factors Stem cells Leukemia genomics Cell cycle Signal transduction Molecular targets for therapy And more Content Types: Original research articles Reviews Letters Correspondence Comments elaborating on significant advances and covering topical issues
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信