AiGPro: a multi-tasks model for profiling of GPCRs for agonist and antagonist

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Rahul Brahma, Sunghyun Moon, Jae-Min Shin, Kwang-Hwi Cho
{"title":"AiGPro: a multi-tasks model for profiling of GPCRs for agonist and antagonist","authors":"Rahul Brahma,&nbsp;Sunghyun Moon,&nbsp;Jae-Min Shin,&nbsp;Kwang-Hwi Cho","doi":"10.1186/s13321-024-00945-7","DOIUrl":null,"url":null,"abstract":"<p>G protein-coupled receptors (GPCRs) play vital roles in various physiological processes, making them attractive drug discovery targets. Meanwhile, deep learning techniques have revolutionized drug discovery by facilitating efficient tools for expediting the identification and optimization of ligands. However, existing models for the GPCRs often focus on single-target or a small subset of GPCRs or employ binary classification, constraining their applicability for high throughput virtual screening. To address these issues, we introduce AiGPro, a novel multitask model designed to predict small molecule agonists (EC<sub>50</sub>) and antagonists (IC<sub>50</sub>) across the 231 human GPCRs, making it a first-in-class solution for large-scale GPCR profiling.</p><p>Leveraging multi-scale context aggregation and bidirectional multi-head cross-attention mechanisms, our approach demonstrates that ensemble models may not be necessary for predicting complex GPCR states and small molecule interactions. Through extensive validation using stratified tenfold cross-validation, AiGPro achieves robust performance with Pearson's correlation coefficient of 0.91, indicating broad generalizability. This breakthrough sets a new standard in the GPCR studies, outperforming previous studies. Moreover, our first-in-class multi-tasking model can predict agonist and antagonist activities across a wide range of GPCRs, offering a comprehensive perspective on ligand bioactivity within this diverse superfamily. To facilitate easy accessibility, we have deployed a web-based platform for model access at https://aicadd.ssu.ac.kr/AiGPro.</p><p><b>Scientific Contribution </b>We introduce a deep learning-based multi-task model to generalize the agonist and antagonist bioactivity prediction for GPCRs accurately. The model is implemented on a user-friendly web server to facilitate rapid screening of small-molecule libraries, expediting GPCR-targeted drug discovery. Covering a diverse set of 231 GPCR targets, the platform delivers a robust, scalable solution for advancing GPCR-focused therapeutic development.</p><p>The proposed framework incorporates an innovative dual-label prediction strategy, enabling the simultaneous classification of molecules as agonists, antagonists, or both. Each prediction is further accompanied by a confidence score, offering a quantitative measure of activity likelihood. This advancement moves beyond conventional models focusing solely on binding affinity, providing a more comprehensive understanding of ligand-receptor interactions.</p><p>At the core of our model lies the Bi-Directional Multi-Head Cross-Attention (BMCA) module, a novel architecture that captures forward and backward contextual embeddings of protein and ligand features. By leveraging BMCA, the model effectively integrates structural and sequence-level information, ensuring a precise representation of molecular interactions. Results show that this approach is highly accurate in binding affinity predictions and consistent across diverse GPCR families.</p><p>By unifying agonist and antagonist bioactivity prediction into a single model architecture, we bridge a critical gap in GPCR modeling. This enhances prediction accuracy and accelerates virtual screening workflows, offering a valuable and innovative solution for advancing GPCR-targeted drug discovery.</p>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00945-7","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00945-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

G protein-coupled receptors (GPCRs) play vital roles in various physiological processes, making them attractive drug discovery targets. Meanwhile, deep learning techniques have revolutionized drug discovery by facilitating efficient tools for expediting the identification and optimization of ligands. However, existing models for the GPCRs often focus on single-target or a small subset of GPCRs or employ binary classification, constraining their applicability for high throughput virtual screening. To address these issues, we introduce AiGPro, a novel multitask model designed to predict small molecule agonists (EC50) and antagonists (IC50) across the 231 human GPCRs, making it a first-in-class solution for large-scale GPCR profiling.

Leveraging multi-scale context aggregation and bidirectional multi-head cross-attention mechanisms, our approach demonstrates that ensemble models may not be necessary for predicting complex GPCR states and small molecule interactions. Through extensive validation using stratified tenfold cross-validation, AiGPro achieves robust performance with Pearson's correlation coefficient of 0.91, indicating broad generalizability. This breakthrough sets a new standard in the GPCR studies, outperforming previous studies. Moreover, our first-in-class multi-tasking model can predict agonist and antagonist activities across a wide range of GPCRs, offering a comprehensive perspective on ligand bioactivity within this diverse superfamily. To facilitate easy accessibility, we have deployed a web-based platform for model access at https://aicadd.ssu.ac.kr/AiGPro.

Scientific Contribution We introduce a deep learning-based multi-task model to generalize the agonist and antagonist bioactivity prediction for GPCRs accurately. The model is implemented on a user-friendly web server to facilitate rapid screening of small-molecule libraries, expediting GPCR-targeted drug discovery. Covering a diverse set of 231 GPCR targets, the platform delivers a robust, scalable solution for advancing GPCR-focused therapeutic development.

The proposed framework incorporates an innovative dual-label prediction strategy, enabling the simultaneous classification of molecules as agonists, antagonists, or both. Each prediction is further accompanied by a confidence score, offering a quantitative measure of activity likelihood. This advancement moves beyond conventional models focusing solely on binding affinity, providing a more comprehensive understanding of ligand-receptor interactions.

At the core of our model lies the Bi-Directional Multi-Head Cross-Attention (BMCA) module, a novel architecture that captures forward and backward contextual embeddings of protein and ligand features. By leveraging BMCA, the model effectively integrates structural and sequence-level information, ensuring a precise representation of molecular interactions. Results show that this approach is highly accurate in binding affinity predictions and consistent across diverse GPCR families.

By unifying agonist and antagonist bioactivity prediction into a single model architecture, we bridge a critical gap in GPCR modeling. This enhances prediction accuracy and accelerates virtual screening workflows, offering a valuable and innovative solution for advancing GPCR-targeted drug discovery.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信