Measurement events relative to temporal quantum reference frames

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-01-30 DOI:10.22331/q-2025-01-30-1616
Ladina Hausmann, Alexander Schmidhuber, Esteban Castro-Ruiz
{"title":"Measurement events relative to temporal quantum reference frames","authors":"Ladina Hausmann, Alexander Schmidhuber, Esteban Castro-Ruiz","doi":"10.22331/q-2025-01-30-1616","DOIUrl":null,"url":null,"abstract":"The Page-Wootters formalism is a proposal for reconciling the background-dependent, quantum-mechanical notion of time with the background independence of general relativity. However, the physical meaning of this framework remains debated. In this work, we compare two consistent approaches to the Page-Wootters formalism to clarify the operational meaning of evolution and measurements with respect to a temporal quantum reference frame. The so-called \"twirled observable\" approach implements measurements as operators that are invariant with respect to the Hamiltonian constraint. The \"purified measurement\" approach instead models measurements dynamically by modifying the constraint itself. While both approaches agree in the limit of ideal clocks, a natural generalization of the purified measurement approach to the case of non-ideal, finite-resource clocks yields a radically different picture. We discuss the physical origin of this discrepancy and argue that these approaches describe operationally distinct situations. Moreover, we show that, for non-ideal clocks, the purified measurement approach yields a time non-local evolution equation, which can lead to non-unitary evolution. Moreover, it implies a fundamental limitation to the operational definition of the temporal order of events. Nevertheless, unitarity and definite temporal order can be restored if we assume that time is discrete.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"23 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-01-30-1616","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Page-Wootters formalism is a proposal for reconciling the background-dependent, quantum-mechanical notion of time with the background independence of general relativity. However, the physical meaning of this framework remains debated. In this work, we compare two consistent approaches to the Page-Wootters formalism to clarify the operational meaning of evolution and measurements with respect to a temporal quantum reference frame. The so-called "twirled observable" approach implements measurements as operators that are invariant with respect to the Hamiltonian constraint. The "purified measurement" approach instead models measurements dynamically by modifying the constraint itself. While both approaches agree in the limit of ideal clocks, a natural generalization of the purified measurement approach to the case of non-ideal, finite-resource clocks yields a radically different picture. We discuss the physical origin of this discrepancy and argue that these approaches describe operationally distinct situations. Moreover, we show that, for non-ideal clocks, the purified measurement approach yields a time non-local evolution equation, which can lead to non-unitary evolution. Moreover, it implies a fundamental limitation to the operational definition of the temporal order of events. Nevertheless, unitarity and definite temporal order can be restored if we assume that time is discrete.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信