{"title":"Gravitational reduction of the wave function through the quantum theory of motion","authors":"Faramarz Rahmani","doi":"10.1007/s10714-025-03365-6","DOIUrl":null,"url":null,"abstract":"<p>We present a novel perspective on gravity-induced wave function reduction using Bohmian trajectories. This study examines the quantum motion of both point particles and objects, identifying critical parameters for the transition from quantum to classical regimes. By analyzing the system’s dynamics, we define the reduction time of the wave function through Bohmian trajectories, introducing a fresh viewpoint in this field. Our findings align with results obtained in standard quantum mechanics, confirming the validity of this approach.</p>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"93 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s10714-025-03365-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a novel perspective on gravity-induced wave function reduction using Bohmian trajectories. This study examines the quantum motion of both point particles and objects, identifying critical parameters for the transition from quantum to classical regimes. By analyzing the system’s dynamics, we define the reduction time of the wave function through Bohmian trajectories, introducing a fresh viewpoint in this field. Our findings align with results obtained in standard quantum mechanics, confirming the validity of this approach.
期刊介绍:
General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation.
It welcomes in particular original articles on the following topics of current research:
Analytical general relativity, including its interface with geometrical analysis
Numerical relativity
Theoretical and observational cosmology
Relativistic astrophysics
Gravitational waves: data analysis, astrophysical sources and detector science
Extensions of general relativity
Supergravity
Gravitational aspects of string theory and its extensions
Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations
Quantum field theory in curved spacetime
Non-commutative geometry and gravitation
Experimental gravity, in particular tests of general relativity
The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.