Plasticity of enteric neurotransmission varies during day-night cycles and with feeding state.

IF 3.9 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Anita J L Leembruggen, Gunes S Yildiz, Justin P Hardee, Lincon A Stamp, Joel C Bornstein, Marlene M Hao
{"title":"Plasticity of enteric neurotransmission varies during day-night cycles and with feeding state.","authors":"Anita J L Leembruggen, Gunes S Yildiz, Justin P Hardee, Lincon A Stamp, Joel C Bornstein, Marlene M Hao","doi":"10.1152/ajpgi.00286.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The circadian cycle is a fundamental biological rhythm that governs many physiological functions across nearly all living organisms. In the gastrointestinal tract, activities such as gut motility, hormone synthesis, and communication between the gut, central nervous system, and microbiome all fluctuate in alignment with the circadian cycle. The enteric nervous system (ENS) is critical for coordinating many of these activities; however, how its activity is governed by the circadian cycle remains unknown. In this study, we used live calcium imaging to examine alterations in enteric neurotransmission during the 24-h day/night cycle in mice. In addition, given the role of food timing as a potent circadian entrainer, we also investigated the impact of an acute 13-h fast on ENS activity. Our findings reveal that enteric neuronal activity typically increases during the dark phase but shifts to the light phase following an acute fast. Importantly, these changes in neuronal activity were not accompanied by alterations in the gene expression of associated neurotransmitter receptors.<b>NEW & NOTEWORTHY</b> Neuronal activity in the enteric nervous system changes during the 24-h day/night cycle, with increased neuronal function detected at night when mice are feeding and active. However, following an acute fast, neuronal sensitivity becomes more pronounced during the day. These changes in neuronal function did not correlate with changes in neurotransmitter receptor gene expression levels.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":"328 2","pages":"G145-G151"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Gastrointestinal and liver physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpgi.00286.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The circadian cycle is a fundamental biological rhythm that governs many physiological functions across nearly all living organisms. In the gastrointestinal tract, activities such as gut motility, hormone synthesis, and communication between the gut, central nervous system, and microbiome all fluctuate in alignment with the circadian cycle. The enteric nervous system (ENS) is critical for coordinating many of these activities; however, how its activity is governed by the circadian cycle remains unknown. In this study, we used live calcium imaging to examine alterations in enteric neurotransmission during the 24-h day/night cycle in mice. In addition, given the role of food timing as a potent circadian entrainer, we also investigated the impact of an acute 13-h fast on ENS activity. Our findings reveal that enteric neuronal activity typically increases during the dark phase but shifts to the light phase following an acute fast. Importantly, these changes in neuronal activity were not accompanied by alterations in the gene expression of associated neurotransmitter receptors.NEW & NOTEWORTHY Neuronal activity in the enteric nervous system changes during the 24-h day/night cycle, with increased neuronal function detected at night when mice are feeding and active. However, following an acute fast, neuronal sensitivity becomes more pronounced during the day. These changes in neuronal function did not correlate with changes in neurotransmitter receptor gene expression levels.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.40
自引率
2.20%
发文量
104
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Gastrointestinal and Liver Physiology publishes original articles pertaining to all aspects of research involving normal or abnormal function of the gastrointestinal tract, hepatobiliary system, and pancreas. Authors are encouraged to submit manuscripts dealing with growth and development, digestion, secretion, absorption, metabolism, and motility relative to these organs, as well as research reports dealing with immune and inflammatory processes and with neural, endocrine, and circulatory control mechanisms that affect these organs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信