A Priori Analysis of a Tensor ROM for Parameter Dependent Parabolic Problems

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Alexander V. Mamonov, Maxim A. Olshanskii
{"title":"A Priori Analysis of a Tensor ROM for Parameter Dependent Parabolic Problems","authors":"Alexander V. Mamonov, Maxim A. Olshanskii","doi":"10.1137/23m1616844","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 1, Page 239-261, February 2025. <br/> Abstract. A space–time–parameters structure of parametric parabolic PDEs motivates the application of tensor methods to define reduced order models (ROMs). Within a tensor-based ROM framework, the matrix SVD—a traditional dimension reduction technique—yields to a low-rank tensor decomposition (LRTD). Such tensor extension of the Galerkin proper orthogonal decomposition ROMs (POD–ROMs) benefits both the practical efficiency of the ROM and its amenability for rigorous error analysis when applied to parametric PDEs. The paper addresses the error analysis of the Galerkin LRTD–ROM for an abstract linear parabolic problem that depends on multiple physical parameters. An error estimate for the LRTD–ROM solution is proved, which is uniform with respect to problem parameters and extends to parameter values not in a sampling/training set. The estimate is given in terms of discretization and sampling mesh properties and LRTD accuracy. The estimate depends on the local smoothness rather than on the Kolmogorov [math]-widths of the parameterized manifold of solutions. Theoretical results are illustrated with several numerical experiments.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"24 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1616844","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Numerical Analysis, Volume 63, Issue 1, Page 239-261, February 2025.
Abstract. A space–time–parameters structure of parametric parabolic PDEs motivates the application of tensor methods to define reduced order models (ROMs). Within a tensor-based ROM framework, the matrix SVD—a traditional dimension reduction technique—yields to a low-rank tensor decomposition (LRTD). Such tensor extension of the Galerkin proper orthogonal decomposition ROMs (POD–ROMs) benefits both the practical efficiency of the ROM and its amenability for rigorous error analysis when applied to parametric PDEs. The paper addresses the error analysis of the Galerkin LRTD–ROM for an abstract linear parabolic problem that depends on multiple physical parameters. An error estimate for the LRTD–ROM solution is proved, which is uniform with respect to problem parameters and extends to parameter values not in a sampling/training set. The estimate is given in terms of discretization and sampling mesh properties and LRTD accuracy. The estimate depends on the local smoothness rather than on the Kolmogorov [math]-widths of the parameterized manifold of solutions. Theoretical results are illustrated with several numerical experiments.
参数相关抛物问题张量ROM的先验分析
SIAM数值分析杂志,第63卷,第1期,第239-261页,2025年2月。摘要。参数抛物型偏微分方程的时空参数结构激发了张量方法定义降阶模型的应用。在基于张量的ROM框架中,矩阵svd -一种传统的降维技术-产生了低秩张量分解(LRTD)。这种伽辽金固有正交分解ROM (pod - ROM)的张量扩展不仅提高了ROM的实用效率,而且在应用于参数偏微分方程时易于进行严格的误差分析。本文对一个抽象线性抛物型多物理参数问题的Galerkin lrt - rom进行了误差分析。证明了lrt - rom解的误差估计,该估计对问题参数是一致的,并扩展到非采样/训练集的参数值。从离散化和采样网格特性以及LRTD精度方面给出了估计。估计依赖于局部平滑而不是参数化解流形的Kolmogorov [math]-宽度。通过数值实验验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信