AAV capsid prioritization in normal and steatotic human livers maintained by machine perfusion

IF 33.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jae-Jun Kim, Simone N. T. Kurial, Pervinder K. Choksi, Miguel Nunez, Tyler Lunow-Luke, Jan Bartel, Julia Driscoll, Chris L. Her, Simaron Dhillon, William Yue, Abhishek Murti, Tin Mao, Julian N. Ramos, Amita Tiyaboonchai, Markus Grompe, Aras N. Mattis, Shareef M. Syed, Bruce M. Wang, Jacquelyn J. Maher, Garrett R. Roll, Holger Willenbring
{"title":"AAV capsid prioritization in normal and steatotic human livers maintained by machine perfusion","authors":"Jae-Jun Kim, Simone N. T. Kurial, Pervinder K. Choksi, Miguel Nunez, Tyler Lunow-Luke, Jan Bartel, Julia Driscoll, Chris L. Her, Simaron Dhillon, William Yue, Abhishek Murti, Tin Mao, Julian N. Ramos, Amita Tiyaboonchai, Markus Grompe, Aras N. Mattis, Shareef M. Syed, Bruce M. Wang, Jacquelyn J. Maher, Garrett R. Roll, Holger Willenbring","doi":"10.1038/s41587-024-02523-6","DOIUrl":null,"url":null,"abstract":"<p>Therapeutic efficacy and safety of adeno-associated virus (AAV) liver gene therapy depend on capsid choice. To predict AAV capsid performance under near-clinical conditions, we established side-by-side comparison at single-cell resolution in human livers maintained by normothermic machine perfusion. AAV-LK03 transduced hepatocytes much more efficiently and specifically than AAV5, AAV8 and AAV6, which are most commonly used clinically, and AAV-NP59, which is better at transducing human hepatocytes engrafted in immune-deficient mice. AAV-LK03 preferentially transduced periportal hepatocytes in normal liver, whereas AAV5 targeted pericentral hepatocytes in steatotic liver. AAV5 and AAV8 transduced liver sinusoidal endothelial cells as efficiently as hepatocytes. AAV capsid and steatosis influenced vector episome formation, which determines gene therapy durability, with AAV5 delaying concatemerization. Our findings inform capsid choice in clinical AAV liver gene therapy, including consideration of disease-relevant hepatocyte zonation and effects of steatosis, and facilitate the development of AAV capsids that transduce hepatocytes or other therapeutically relevant cell types in the human liver with maximum efficiency and specificity.</p>","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":"28 1","pages":""},"PeriodicalIF":33.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41587-024-02523-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Therapeutic efficacy and safety of adeno-associated virus (AAV) liver gene therapy depend on capsid choice. To predict AAV capsid performance under near-clinical conditions, we established side-by-side comparison at single-cell resolution in human livers maintained by normothermic machine perfusion. AAV-LK03 transduced hepatocytes much more efficiently and specifically than AAV5, AAV8 and AAV6, which are most commonly used clinically, and AAV-NP59, which is better at transducing human hepatocytes engrafted in immune-deficient mice. AAV-LK03 preferentially transduced periportal hepatocytes in normal liver, whereas AAV5 targeted pericentral hepatocytes in steatotic liver. AAV5 and AAV8 transduced liver sinusoidal endothelial cells as efficiently as hepatocytes. AAV capsid and steatosis influenced vector episome formation, which determines gene therapy durability, with AAV5 delaying concatemerization. Our findings inform capsid choice in clinical AAV liver gene therapy, including consideration of disease-relevant hepatocyte zonation and effects of steatosis, and facilitate the development of AAV capsids that transduce hepatocytes or other therapeutically relevant cell types in the human liver with maximum efficiency and specificity.

Abstract Image

腺相关病毒(AAV)肝脏基因疗法的疗效和安全性取决于囊壳的选择。为了预测 AAV 胶囊在近临床条件下的性能,我们在常温机器灌注维持的人类肝脏中以单细胞分辨率进行了并排比较。与临床上最常用的 AAV5、AAV8 和 AAV6 以及 AAV-NP59 相比,AAV-LK03 转导肝细胞的效率更高、特异性更强,而 AAV-NP59 在转导移植到免疫缺陷小鼠体内的人类肝细胞方面更胜一筹。AAV-LK03 优先转导正常肝脏的肝门周围细胞,而 AAV5 则转导脂肪肝肝细胞的中央周围细胞。AAV5和AAV8转导肝窦内皮细胞的效率与转导肝细胞一样高。AAV 胶囊和脂肪变性会影响载体外显子的形成,而外显子的形成决定了基因治疗的持久性,AAV5 会延迟外显子的形成。我们的研究结果为临床 AAV 肝脏基因治疗中的病毒帽选择提供了参考,包括考虑与疾病相关的肝细胞分区和脂肪变性的影响,并促进了 AAV 病毒帽的开发,从而以最高的效率和特异性转导人类肝脏中的肝细胞或其他与治疗相关的细胞类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature biotechnology
Nature biotechnology 工程技术-生物工程与应用微生物
CiteScore
63.00
自引率
1.70%
发文量
382
审稿时长
3 months
期刊介绍: Nature Biotechnology is a monthly journal that focuses on the science and business of biotechnology. It covers a wide range of topics including technology/methodology advancements in the biological, biomedical, agricultural, and environmental sciences. The journal also explores the commercial, political, ethical, legal, and societal aspects of this research. The journal serves researchers by providing peer-reviewed research papers in the field of biotechnology. It also serves the business community by delivering news about research developments. This approach ensures that both the scientific and business communities are well-informed and able to stay up-to-date on the latest advancements and opportunities in the field. Some key areas of interest in which the journal actively seeks research papers include molecular engineering of nucleic acids and proteins, molecular therapy, large-scale biology, computational biology, regenerative medicine, imaging technology, analytical biotechnology, applied immunology, food and agricultural biotechnology, and environmental biotechnology. In summary, Nature Biotechnology is a comprehensive journal that covers both the scientific and business aspects of biotechnology. It strives to provide researchers with valuable research papers and news while also delivering important scientific advancements to the business community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信