Chang Qiao, Shuran Liu, Yuwang Wang, Wencong Xu, Xiaohan Geng, Tao Jiang, Jingyu Zhang, Quan Meng, Hui Qiao, Dong Li, Qionghai Dai
{"title":"A neural network for long-term super-resolution imaging of live cells with reliable confidence quantification","authors":"Chang Qiao, Shuran Liu, Yuwang Wang, Wencong Xu, Xiaohan Geng, Tao Jiang, Jingyu Zhang, Quan Meng, Hui Qiao, Dong Li, Qionghai Dai","doi":"10.1038/s41587-025-02553-8","DOIUrl":null,"url":null,"abstract":"<p>Super-resolution (SR) neural networks transform low-resolution optical microscopy images into SR images. Application of single-image SR (SISR) methods to long-term imaging has not exploited the temporal dependencies between neighboring frames and has been subject to inference uncertainty that is difficult to quantify. Here, by building a large-scale fluorescence microscopy dataset and evaluating the propagation and alignment components of neural network models, we devise a deformable phase-space alignment (DPA) time-lapse image SR (TISR) neural network. DPA-TISR adaptively enhances the cross-frame alignment in the phase domain and outperforms existing state-of-the-art SISR and TISR models. We also develop Bayesian DPA-TISR and design an expected calibration error minimization framework that reliably infers inference confidence. We demonstrate multicolor live-cell SR imaging for more than 10,000 time points of various biological specimens with high fidelity, temporal consistency and accurate confidence quantification.</p>","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":"12 1","pages":""},"PeriodicalIF":33.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41587-025-02553-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Super-resolution (SR) neural networks transform low-resolution optical microscopy images into SR images. Application of single-image SR (SISR) methods to long-term imaging has not exploited the temporal dependencies between neighboring frames and has been subject to inference uncertainty that is difficult to quantify. Here, by building a large-scale fluorescence microscopy dataset and evaluating the propagation and alignment components of neural network models, we devise a deformable phase-space alignment (DPA) time-lapse image SR (TISR) neural network. DPA-TISR adaptively enhances the cross-frame alignment in the phase domain and outperforms existing state-of-the-art SISR and TISR models. We also develop Bayesian DPA-TISR and design an expected calibration error minimization framework that reliably infers inference confidence. We demonstrate multicolor live-cell SR imaging for more than 10,000 time points of various biological specimens with high fidelity, temporal consistency and accurate confidence quantification.
期刊介绍:
Nature Biotechnology is a monthly journal that focuses on the science and business of biotechnology. It covers a wide range of topics including technology/methodology advancements in the biological, biomedical, agricultural, and environmental sciences. The journal also explores the commercial, political, ethical, legal, and societal aspects of this research.
The journal serves researchers by providing peer-reviewed research papers in the field of biotechnology. It also serves the business community by delivering news about research developments. This approach ensures that both the scientific and business communities are well-informed and able to stay up-to-date on the latest advancements and opportunities in the field.
Some key areas of interest in which the journal actively seeks research papers include molecular engineering of nucleic acids and proteins, molecular therapy, large-scale biology, computational biology, regenerative medicine, imaging technology, analytical biotechnology, applied immunology, food and agricultural biotechnology, and environmental biotechnology.
In summary, Nature Biotechnology is a comprehensive journal that covers both the scientific and business aspects of biotechnology. It strives to provide researchers with valuable research papers and news while also delivering important scientific advancements to the business community.