Sourav Majumdar, Robin Grotjahn, Ahmadreza Rajabi, Bibo Feng, Luke Nambi Mohanam, Gabriel S. Phun, Nicolas Lutfi, Mohammad Khan, Dmitrij Rappoport, Filipp Furche
{"title":"Mechanism of the Non-Kasha Fluorescence in Pyrene","authors":"Sourav Majumdar, Robin Grotjahn, Ahmadreza Rajabi, Bibo Feng, Luke Nambi Mohanam, Gabriel S. Phun, Nicolas Lutfi, Mohammad Khan, Dmitrij Rappoport, Filipp Furche","doi":"10.1002/jcc.70040","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The high-energy shoulder in the gas-phase fluorescence emission spectrum of pyrene is a well-known example of non-Kasha emission. We comparatively assess two approaches, vibronic perturbation theory and nonadiabatic dynamics, in their ability to predict and explain the gas-phase fluorescence spectrum of pyrene. While both methods qualitatively capture the non-Kasha emission, they differ in their computational requirements, accuracy, and physical interpretation. Vibronic perturbation theory and nonadiabatic dynamics are complementary and can be combined in a two-step approach to non-Kasha fluorescence.</p>\n </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70040","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The high-energy shoulder in the gas-phase fluorescence emission spectrum of pyrene is a well-known example of non-Kasha emission. We comparatively assess two approaches, vibronic perturbation theory and nonadiabatic dynamics, in their ability to predict and explain the gas-phase fluorescence spectrum of pyrene. While both methods qualitatively capture the non-Kasha emission, they differ in their computational requirements, accuracy, and physical interpretation. Vibronic perturbation theory and nonadiabatic dynamics are complementary and can be combined in a two-step approach to non-Kasha fluorescence.
期刊介绍:
This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.