{"title":"N7-methylguanosine modification in cancers: from mechanisms to therapeutic potential","authors":"Qihui Wu, Xiaodan Fu, Guoqian Liu, Xiaoyun He, Yimin Li, Chunlin Ou","doi":"10.1186/s13045-025-01665-7","DOIUrl":null,"url":null,"abstract":"N7-methylguanosine (m7G) is an important RNA modification involved in epigenetic regulation that is commonly observed in both prokaryotic and eukaryotic organisms. Their influence on the synthesis and processing of messenger RNA, ribosomal RNA, and transfer RNA allows m7G modifications to affect diverse cellular, physiological, and pathological processes. m7G modifications are pivotal in human diseases, particularly cancer progression. On one hand, m7G modification-associated modulate tumour progression and affect malignant biological characteristics, including sustained proliferation signalling, resistance to cell death, activation of invasion and metastasis, reprogramming of energy metabolism, genome instability, and immune evasion. This suggests that they may be novel therapeutic targets for cancer treatment. On the other hand, the aberrant expression of m7G modification-associated molecules is linked to clinicopathological characteristics, including tumour staging, lymph node metastasis, and unfavourable prognoses in patients with cancer, indicating their potential as tumour biomarkers. This review consolidates the discovery, identification, detection methodologies, and functional roles of m7G modification, analysing the mechanisms by which m7G modification-associated molecules contribute to tumour development, and exploring their potential clinical applications in cancer diagnostics and therapy, thereby providing innovative strategies for tumour identification and targeted treatment.","PeriodicalId":16023,"journal":{"name":"Journal of Hematology & Oncology","volume":"84 1","pages":""},"PeriodicalIF":29.5000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hematology & Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13045-025-01665-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
N7-methylguanosine (m7G) is an important RNA modification involved in epigenetic regulation that is commonly observed in both prokaryotic and eukaryotic organisms. Their influence on the synthesis and processing of messenger RNA, ribosomal RNA, and transfer RNA allows m7G modifications to affect diverse cellular, physiological, and pathological processes. m7G modifications are pivotal in human diseases, particularly cancer progression. On one hand, m7G modification-associated modulate tumour progression and affect malignant biological characteristics, including sustained proliferation signalling, resistance to cell death, activation of invasion and metastasis, reprogramming of energy metabolism, genome instability, and immune evasion. This suggests that they may be novel therapeutic targets for cancer treatment. On the other hand, the aberrant expression of m7G modification-associated molecules is linked to clinicopathological characteristics, including tumour staging, lymph node metastasis, and unfavourable prognoses in patients with cancer, indicating their potential as tumour biomarkers. This review consolidates the discovery, identification, detection methodologies, and functional roles of m7G modification, analysing the mechanisms by which m7G modification-associated molecules contribute to tumour development, and exploring their potential clinical applications in cancer diagnostics and therapy, thereby providing innovative strategies for tumour identification and targeted treatment.
期刊介绍:
The Journal of Hematology & Oncology, an open-access journal, publishes high-quality research covering all aspects of hematology and oncology, including reviews and research highlights on "hot topics" by leading experts.
Given the close relationship and rapid evolution of hematology and oncology, the journal aims to meet the demand for a dedicated platform for publishing discoveries from both fields. It serves as an international platform for sharing laboratory and clinical findings among laboratory scientists, physician scientists, hematologists, and oncologists in an open-access format. With a rapid turnaround time from submission to publication, the journal facilitates real-time sharing of knowledge and new successes.