Ultrafast Online Clutter Filtering for Ultrasound Microvascular Imaging

Yinran Chen;Baohui Fang;Huaying Li;Lijie Huang;Jianwen Luo
{"title":"Ultrafast Online Clutter Filtering for Ultrasound Microvascular Imaging","authors":"Yinran Chen;Baohui Fang;Huaying Li;Lijie Huang;Jianwen Luo","doi":"10.1109/TMI.2025.3535550","DOIUrl":null,"url":null,"abstract":"Spatiotemporal clutter filtering via robust principal component analysis (rPCA) has been widely used in ultrasound microvascular imaging. However, the performance of the rPCA clutter filtering highly relies on low-rank modeling for tissue signals and sparse modeling for blood flow signals. Moreover, current rPCA clutter filters are typically based on static processing and have to access a batch of beamformed frames for optimization. This prevents these filters from ultrafast realization. This paper adopts the iteratively reweighted least squares (IRLS) rPCA framework to model tissue and blood flow signals for improved clutter filtering. More importantly, the static IRLS-rPCA filter is upgraded to a spatiotemporal-constrained online method to instantaneously extract blood flow signals from the ongoing beamformed frame. Simulations and in-vivo experiments on a contrast-enhanced rat kidney and a contrast-free human liver demonstrated that the IRLS-rPCA clutter filter achieves higher sensitivity, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) than other rPCA methods. Particularly, the static IRLS-rPCA clutter filter obtains more than 2 dB improvements in CNR over the compared methods in the human liver dataset. The proposed online clutter filter achieves comparable image quality to the static version and processing time of <inline-formula> <tex-math>$0.028~\\pm ~0.004$ </tex-math></inline-formula> seconds per frame. The corresponding acceleration factor of the online clutter filter over all the tested methods is more than 20.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 6","pages":"2477-2491"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10855831/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spatiotemporal clutter filtering via robust principal component analysis (rPCA) has been widely used in ultrasound microvascular imaging. However, the performance of the rPCA clutter filtering highly relies on low-rank modeling for tissue signals and sparse modeling for blood flow signals. Moreover, current rPCA clutter filters are typically based on static processing and have to access a batch of beamformed frames for optimization. This prevents these filters from ultrafast realization. This paper adopts the iteratively reweighted least squares (IRLS) rPCA framework to model tissue and blood flow signals for improved clutter filtering. More importantly, the static IRLS-rPCA filter is upgraded to a spatiotemporal-constrained online method to instantaneously extract blood flow signals from the ongoing beamformed frame. Simulations and in-vivo experiments on a contrast-enhanced rat kidney and a contrast-free human liver demonstrated that the IRLS-rPCA clutter filter achieves higher sensitivity, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) than other rPCA methods. Particularly, the static IRLS-rPCA clutter filter obtains more than 2 dB improvements in CNR over the compared methods in the human liver dataset. The proposed online clutter filter achieves comparable image quality to the static version and processing time of $0.028~\pm ~0.004$ seconds per frame. The corresponding acceleration factor of the online clutter filter over all the tested methods is more than 20.
超声微血管成像的超快速在线杂波滤波
基于鲁棒主成分分析的时空杂波滤波在超声微血管成像中得到了广泛的应用。然而,rPCA杂波滤波的性能高度依赖于对组织信号的低秩建模和对血流信号的稀疏建模。此外,当前的rPCA杂波滤波器通常基于静态处理,并且必须访问一批波束形成的帧进行优化。这阻止了这些过滤器的超快实现。本文采用迭代加权最小二乘(IRLS) rPCA框架对组织和血流信号进行建模,以改进杂波滤波。更重要的是,将静态IRLS-rPCA滤波器升级为一种时空约束的在线方法,从正在进行的波束形成帧中即时提取血流信号。对比增强的大鼠肾脏和无对比的人肝脏的模拟和体内实验表明,IRLS-rPCA杂波滤波器比其他rPCA方法具有更高的灵敏度、噪比(CNR)和信噪比(SNR)。特别是,静态IRLS-rPCA杂波滤波器比人类肝脏数据集中的比较方法的CNR提高了2 dB以上。所提出的在线杂波滤波器达到了与静态版本相当的图像质量,处理时间为每帧$0.028~ $ 0.004$秒。在所有测试方法中,在线杂波滤波器的加速度系数都大于20。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信