Environment scan of generative AI infrastructure for clinical and translational science.

Npj health systems Pub Date : 2025-01-01 Epub Date: 2025-01-25 DOI:10.1038/s44401-024-00009-w
Betina Idnay, Zihan Xu, William G Adams, Mohammad Adibuzzaman, Nicholas R Anderson, Neil Bahroos, Douglas S Bell, Cody Bumgardner, Thomas Campion, Mario Castro, James J Cimino, I Glenn Cohen, David Dorr, Peter L Elkin, Jungwei W Fan, Todd Ferris, David J Foran, David Hanauer, Mike Hogarth, Kun Huang, Jayashree Kalpathy-Cramer, Manoj Kandpal, Niranjan S Karnik, Avnish Katoch, Albert M Lai, Christophe G Lambert, Lang Li, Christopher Lindsell, Jinze Liu, Zhiyong Lu, Yuan Luo, Peter McGarvey, Eneida A Mendonca, Parsa Mirhaji, Shawn Murphy, John D Osborne, Ioannis C Paschalidis, Paul A Harris, Fred Prior, Nicholas J Shaheen, Nawar Shara, Ida Sim, Umberto Tachinardi, Lemuel R Waitman, Rosalind J Wright, Adrian H Zai, Kai Zheng, Sandra Soo-Jin Lee, Bradley A Malin, Karthik Natarajan, W Nicholson Price Ii, Rui Zhang, Yiye Zhang, Hua Xu, Jiang Bian, Chunhua Weng, Yifan Peng
{"title":"Environment scan of generative AI infrastructure for clinical and translational science.","authors":"Betina Idnay, Zihan Xu, William G Adams, Mohammad Adibuzzaman, Nicholas R Anderson, Neil Bahroos, Douglas S Bell, Cody Bumgardner, Thomas Campion, Mario Castro, James J Cimino, I Glenn Cohen, David Dorr, Peter L Elkin, Jungwei W Fan, Todd Ferris, David J Foran, David Hanauer, Mike Hogarth, Kun Huang, Jayashree Kalpathy-Cramer, Manoj Kandpal, Niranjan S Karnik, Avnish Katoch, Albert M Lai, Christophe G Lambert, Lang Li, Christopher Lindsell, Jinze Liu, Zhiyong Lu, Yuan Luo, Peter McGarvey, Eneida A Mendonca, Parsa Mirhaji, Shawn Murphy, John D Osborne, Ioannis C Paschalidis, Paul A Harris, Fred Prior, Nicholas J Shaheen, Nawar Shara, Ida Sim, Umberto Tachinardi, Lemuel R Waitman, Rosalind J Wright, Adrian H Zai, Kai Zheng, Sandra Soo-Jin Lee, Bradley A Malin, Karthik Natarajan, W Nicholson Price Ii, Rui Zhang, Yiye Zhang, Hua Xu, Jiang Bian, Chunhua Weng, Yifan Peng","doi":"10.1038/s44401-024-00009-w","DOIUrl":null,"url":null,"abstract":"<p><p>This study reports a comprehensive environmental scan of the generative AI (GenAI) infrastructure in the national network for clinical and translational science across 36 institutions supported by the CTSA Program led by the National Center for Advancing Translational Sciences (NCATS) of the National Institutes of Health (NIH) at the United States. Key findings indicate a diverse range of institutional strategies, with most organizations in the experimental phase of GenAI deployment. The results underscore the need for a more coordinated approach to GenAI governance, emphasizing collaboration among senior leaders, clinicians, information technology staff, and researchers. Our analysis reveals that 53% of institutions identified data security as a primary concern, followed by lack of clinician trust (50%) and AI bias (44%), which must be addressed to ensure the ethical and effective implementation of GenAI technologies.</p>","PeriodicalId":520349,"journal":{"name":"Npj health systems","volume":"2 1","pages":"4"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762411/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npj health systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44401-024-00009-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study reports a comprehensive environmental scan of the generative AI (GenAI) infrastructure in the national network for clinical and translational science across 36 institutions supported by the CTSA Program led by the National Center for Advancing Translational Sciences (NCATS) of the National Institutes of Health (NIH) at the United States. Key findings indicate a diverse range of institutional strategies, with most organizations in the experimental phase of GenAI deployment. The results underscore the need for a more coordinated approach to GenAI governance, emphasizing collaboration among senior leaders, clinicians, information technology staff, and researchers. Our analysis reveals that 53% of institutions identified data security as a primary concern, followed by lack of clinician trust (50%) and AI bias (44%), which must be addressed to ensure the ethical and effective implementation of GenAI technologies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信