Intestinal Epithelial Ptpn23 Is Essential For Gut Barrier Integrity And Prevention Of Fatal Bacterial Translocation.

Rocio Sanchez Alvarez, Ana Montalban-Arques, Yasser Morsy, Claudia Gottier, Janine Häfliger, Kirstin Atrott, Anna Bircher, Egle Katkeviciute, Doris Pöhlmann, Luise Linzmeier, Madita Determann, Céline Mamie, Anna Niechcial, Marlene Schwarzfischer, Sebastian Zeissig, Silvia Lang, Michael Scharl, Marianne Spalinger
{"title":"Intestinal Epithelial Ptpn23 Is Essential For Gut Barrier Integrity And Prevention Of Fatal Bacterial Translocation.","authors":"Rocio Sanchez Alvarez, Ana Montalban-Arques, Yasser Morsy, Claudia Gottier, Janine Häfliger, Kirstin Atrott, Anna Bircher, Egle Katkeviciute, Doris Pöhlmann, Luise Linzmeier, Madita Determann, Céline Mamie, Anna Niechcial, Marlene Schwarzfischer, Sebastian Zeissig, Silvia Lang, Michael Scharl, Marianne Spalinger","doi":"10.1093/ecco-jcc/jjaf016","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Protein tyrosine phosphatase non-receptor type 23 (PTPN23) regulates the internalization of growth factor receptors such as the epithelial growth factor receptor (EGFR). Given the crucial function of such receptors in intestinal epithelial cells (IECs), we assessed the involvement of PTPN23 in intestinal homeostasis and epithelial proliferation.</p><p><strong>Methods: </strong>We generated mouse models with constitutive (PTPN23fl/flVilCre+/-) or inducible (PTPN23fl/flVilCreERT+/-) deletion of PTPN23 in IEC. To elucidate the functional consequences of PTPN23 deletion in IEC, we performed barrier function studies, flow cytometry, RNAseq and in vivo experiments applying EGFR inhibition, antibiotic treatment, or co-housing approaches to further delineate the observed phenotype.</p><p><strong>Results: </strong>Deletion of PTPN23 in IECs resulted in a severe early-onset phenotype in both models. Mice were characterized by elongated colon, epithelial hyperproliferation, splenomegaly and diarrhea leading to the death of the mice within 3 weeks of PTNP23 deletion. Compromised gut barrier integrity resulted in enhanced bacterial translocation accompanied by reduced IgA transcytosis in PTPN23fl/flVilCreERT+/- compared to wild-type mice. Although EGFR surface expression was increased upon PTPN23-deletion, inhibition of EGFR signaling did not prevent disease. In contrast, and in accordance with defective bacterial handling, antibiotic treatment, but not co-housing, fully rescued the phenotype.</p><p><strong>Conclusion: </strong>The absence of PTPN23 in IECs leads to lethal dysregulation of intestinal homeostasis, triggered by bacterial infiltration due to defects in the intestinal epithelial barrier and impaired IgA transcytosis. Thus, we identify PTPN23 as a novel key player in preserving intestinal epithelial homeostasis, ultimately preventing bacterial overgrowth and excessive immune activation in the intestine.</p>","PeriodicalId":94074,"journal":{"name":"Journal of Crohn's & colitis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crohn's & colitis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ecco-jcc/jjaf016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background and aims: Protein tyrosine phosphatase non-receptor type 23 (PTPN23) regulates the internalization of growth factor receptors such as the epithelial growth factor receptor (EGFR). Given the crucial function of such receptors in intestinal epithelial cells (IECs), we assessed the involvement of PTPN23 in intestinal homeostasis and epithelial proliferation.

Methods: We generated mouse models with constitutive (PTPN23fl/flVilCre+/-) or inducible (PTPN23fl/flVilCreERT+/-) deletion of PTPN23 in IEC. To elucidate the functional consequences of PTPN23 deletion in IEC, we performed barrier function studies, flow cytometry, RNAseq and in vivo experiments applying EGFR inhibition, antibiotic treatment, or co-housing approaches to further delineate the observed phenotype.

Results: Deletion of PTPN23 in IECs resulted in a severe early-onset phenotype in both models. Mice were characterized by elongated colon, epithelial hyperproliferation, splenomegaly and diarrhea leading to the death of the mice within 3 weeks of PTNP23 deletion. Compromised gut barrier integrity resulted in enhanced bacterial translocation accompanied by reduced IgA transcytosis in PTPN23fl/flVilCreERT+/- compared to wild-type mice. Although EGFR surface expression was increased upon PTPN23-deletion, inhibition of EGFR signaling did not prevent disease. In contrast, and in accordance with defective bacterial handling, antibiotic treatment, but not co-housing, fully rescued the phenotype.

Conclusion: The absence of PTPN23 in IECs leads to lethal dysregulation of intestinal homeostasis, triggered by bacterial infiltration due to defects in the intestinal epithelial barrier and impaired IgA transcytosis. Thus, we identify PTPN23 as a novel key player in preserving intestinal epithelial homeostasis, ultimately preventing bacterial overgrowth and excessive immune activation in the intestine.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信