Polyphyllin VII Enhances the Sensitivity of Prostate Cancer Cells to Docetaxel by Promoting Mitochondrial Dysfunction and Inducing Ferroptosis

IF 3.2 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yun-Yi Chen, Wen-Xi Hua, Yu-Hua Huang, Xiang Ding
{"title":"Polyphyllin VII Enhances the Sensitivity of Prostate Cancer Cells to Docetaxel by Promoting Mitochondrial Dysfunction and Inducing Ferroptosis","authors":"Yun-Yi Chen,&nbsp;Wen-Xi Hua,&nbsp;Yu-Hua Huang,&nbsp;Xiang Ding","doi":"10.1111/cbdd.70053","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Docetaxel (DTX) is the preferred chemotherapeutic drug for prostate cancer (Pca), but the emergence of resistance has significantly reduced its efficacy. Polyphyllin VII (PPVII), a small molecule natural product derived from the traditional herb Paris polyphylla, has shown anticancer potential. This study aims to investigate the effects and mechanisms of PPVII combined with DTX in treating Pca. DTX-sensitive DU-145 cells and DTX-resistant DU145/DTX cells were utilized for experiments in this study. Cell viability was assessed using MTT assays, while apoptosis, cell cycles, and ferroptosis were analyzed through flow cytometry and Western blot. Mitochondrial function was evaluated using immunofluorescence. Additionally, the expression of proteins related to the AMP-activated protein kinase/mammalian target of the rapamycin/S6 kinase (AMPK/mTOR/S6K) signaling pathway was also examined to further investigate the underlying mechanisms. PPVII significantly enhanced the inhibitory effect of DTX, reduced cell viability (<i>p</i> &lt; 0.05), and promoted apoptosis (<i>p</i> &lt; 0.05) and cell cycle arrest (<i>p</i> &lt; 0.05). Specifically, PPVII increased the sensitivity of Pca cells to DTX by inducing ferroptosis and affecting mitochondrial function. Notably, the activation of the AMPK/mTOR/S6K signaling pathway played a crucial role in this process. This study revealed the synergistic effects and potential mechanisms of PPVII combined with DTX in Pca cells, and provided a reference for effectively overcoming DTX resistance in the clinical treatment of Pca.</p>\n </div>","PeriodicalId":143,"journal":{"name":"Chemical Biology & Drug Design","volume":"105 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Biology & Drug Design","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.70053","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Docetaxel (DTX) is the preferred chemotherapeutic drug for prostate cancer (Pca), but the emergence of resistance has significantly reduced its efficacy. Polyphyllin VII (PPVII), a small molecule natural product derived from the traditional herb Paris polyphylla, has shown anticancer potential. This study aims to investigate the effects and mechanisms of PPVII combined with DTX in treating Pca. DTX-sensitive DU-145 cells and DTX-resistant DU145/DTX cells were utilized for experiments in this study. Cell viability was assessed using MTT assays, while apoptosis, cell cycles, and ferroptosis were analyzed through flow cytometry and Western blot. Mitochondrial function was evaluated using immunofluorescence. Additionally, the expression of proteins related to the AMP-activated protein kinase/mammalian target of the rapamycin/S6 kinase (AMPK/mTOR/S6K) signaling pathway was also examined to further investigate the underlying mechanisms. PPVII significantly enhanced the inhibitory effect of DTX, reduced cell viability (p < 0.05), and promoted apoptosis (p < 0.05) and cell cycle arrest (p < 0.05). Specifically, PPVII increased the sensitivity of Pca cells to DTX by inducing ferroptosis and affecting mitochondrial function. Notably, the activation of the AMPK/mTOR/S6K signaling pathway played a crucial role in this process. This study revealed the synergistic effects and potential mechanisms of PPVII combined with DTX in Pca cells, and provided a reference for effectively overcoming DTX resistance in the clinical treatment of Pca.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Biology & Drug Design
Chemical Biology & Drug Design 医学-生化与分子生物学
CiteScore
5.10
自引率
3.30%
发文量
164
审稿时长
4.4 months
期刊介绍: Chemical Biology & Drug Design is a peer-reviewed scientific journal that is dedicated to the advancement of innovative science, technology and medicine with a focus on the multidisciplinary fields of chemical biology and drug design. It is the aim of Chemical Biology & Drug Design to capture significant research and drug discovery that highlights new concepts, insight and new findings within the scope of chemical biology and drug design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信