An Efficient Method for Immortalizing Mouse Embryonic Fibroblasts by CRISPR-mediated Deletion of the Tp53 Gene.

IF 1 Q3 BIOLOGY
Srisathya Srinivasan, Hsin-Yi Henry Ho
{"title":"An Efficient Method for Immortalizing Mouse Embryonic Fibroblasts by CRISPR-mediated Deletion of the <i>Tp53</i> Gene.","authors":"Srisathya Srinivasan, Hsin-Yi Henry Ho","doi":"10.21769/BioProtoc.5159","DOIUrl":null,"url":null,"abstract":"<p><p>Mouse embryonic fibroblasts (MEFs) derived from genetically modified mice are a valuable resource for studying gene function and regulation. The MEF system can also be combined with rescue studies to characterize the function of mutant genes/proteins, such as disease-causing variants. However, primary MEFs undergo senescence soon after isolation and passaging, making long-term genetic manipulations difficult. Previously described methods for MEF immortalization are often inconsistent or alter the physiological properties of the cells. Here, we describe an optimized method that overcomes these limitations. By using electroporation to deliver CRISPR constructs that target the <i>Tp53</i> gene, the method reliably generates immortalized MEFs (iMEFs) within three weeks. Importantly, iMEFs closely resemble the parent cell populations, and individual iMEFs can be cloned and expanded for subsequent genetic manipulation and characterization. We envision that this protocol can be adopted broadly to immortalize other mouse primary cell types. Key features • CRISPR-based knockout of the <i>Tp53</i> gene enables efficient immortalization of mouse embryonic fibroblasts (MEFs) in under three weeks. • Immortalization requires a Neon electroporator or a comparable system to transfect cells with the <i>Tp53</i> CRISPR constructs.</p>","PeriodicalId":93907,"journal":{"name":"Bio-protocol","volume":"15 2","pages":"e5159"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769752/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-protocol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21769/BioProtoc.5159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mouse embryonic fibroblasts (MEFs) derived from genetically modified mice are a valuable resource for studying gene function and regulation. The MEF system can also be combined with rescue studies to characterize the function of mutant genes/proteins, such as disease-causing variants. However, primary MEFs undergo senescence soon after isolation and passaging, making long-term genetic manipulations difficult. Previously described methods for MEF immortalization are often inconsistent or alter the physiological properties of the cells. Here, we describe an optimized method that overcomes these limitations. By using electroporation to deliver CRISPR constructs that target the Tp53 gene, the method reliably generates immortalized MEFs (iMEFs) within three weeks. Importantly, iMEFs closely resemble the parent cell populations, and individual iMEFs can be cloned and expanded for subsequent genetic manipulation and characterization. We envision that this protocol can be adopted broadly to immortalize other mouse primary cell types. Key features • CRISPR-based knockout of the Tp53 gene enables efficient immortalization of mouse embryonic fibroblasts (MEFs) in under three weeks. • Immortalization requires a Neon electroporator or a comparable system to transfect cells with the Tp53 CRISPR constructs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信