Characterization of a primary cellular airway model for inhalative drug delivery in comparison with the established permanent cell lines CaLu3 and RPMI 2650.

In vitro models Pub Date : 2024-11-25 eCollection Date: 2024-12-01 DOI:10.1007/s44164-024-00079-y
Janik Martin, Rebecca Rittersberger, Simon Treitler, Patrick Kopp, Anit Ibraimi, Gabriel Koslowski, Max Sickinger, Annabelle Dabbars, Katharina Schindowski
{"title":"Characterization of a primary cellular airway model for inhalative drug delivery in comparison with the established permanent cell lines CaLu3 and RPMI 2650.","authors":"Janik Martin, Rebecca Rittersberger, Simon Treitler, Patrick Kopp, Anit Ibraimi, Gabriel Koslowski, Max Sickinger, Annabelle Dabbars, Katharina Schindowski","doi":"10.1007/s44164-024-00079-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>For optimization of respiratory drug delivery, the selection of suitable in vitro cell models plays an important role in predicting the efficacy and safety of (bio)pharmaceutics and pharmaceutical formulations. Therefore, an in-depth comparison of different primary and permanent in vitro cellular airway models was performed with a focus on selecting a suitable model for inhalative antibodies.</p><p><strong>Methods: </strong>Primary cells isolated from the porcine trachea were compared with the established human cell lines CaLu3 and RPMI 2650. The in vitro models were characterized for different epithelial markers by real-time quantitative polymerase chain reaction, which provides insight into the cellular composition of each model. For a few selected markers, the results from RT-qPCR were confirmed via immunofluorescence. Barrier integrity was assessed by transepithelial electrical resistance measurements and FITC-dextran permeability.</p><p><strong>Results: </strong>Primary cell models retain key features of the respiratory epithelium, e.g., the formation of a tight epithelial barrier, mucin production, and the presence of club/basal cells. Furthermore, the expression of Fc receptors in the primary cell models closely resembles that in respiratory mucosal tissue, an essential parameter to consider when developing therapeutic antibodies for inhalation.</p><p><strong>Conclusion: </strong>The study underlines the importance of selecting wisely appropriate in vitro models. Despite the greater effort and variability in cultivating primary airway cells, they are far superior to permanent cells and a suitable model for drug development.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s44164-024-00079-y.</p>","PeriodicalId":73357,"journal":{"name":"In vitro models","volume":"3 4-6","pages":"183-203"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756470/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In vitro models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44164-024-00079-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: For optimization of respiratory drug delivery, the selection of suitable in vitro cell models plays an important role in predicting the efficacy and safety of (bio)pharmaceutics and pharmaceutical formulations. Therefore, an in-depth comparison of different primary and permanent in vitro cellular airway models was performed with a focus on selecting a suitable model for inhalative antibodies.

Methods: Primary cells isolated from the porcine trachea were compared with the established human cell lines CaLu3 and RPMI 2650. The in vitro models were characterized for different epithelial markers by real-time quantitative polymerase chain reaction, which provides insight into the cellular composition of each model. For a few selected markers, the results from RT-qPCR were confirmed via immunofluorescence. Barrier integrity was assessed by transepithelial electrical resistance measurements and FITC-dextran permeability.

Results: Primary cell models retain key features of the respiratory epithelium, e.g., the formation of a tight epithelial barrier, mucin production, and the presence of club/basal cells. Furthermore, the expression of Fc receptors in the primary cell models closely resembles that in respiratory mucosal tissue, an essential parameter to consider when developing therapeutic antibodies for inhalation.

Conclusion: The study underlines the importance of selecting wisely appropriate in vitro models. Despite the greater effort and variability in cultivating primary airway cells, they are far superior to permanent cells and a suitable model for drug development.

Supplementary information: The online version contains supplementary material available at 10.1007/s44164-024-00079-y.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信