Hang Song, Ruoyu Chen, Liyuan Ren, Junfeng Sun, Shanbao Tong
{"title":"State-dependent neurovascular modulation induced by transcranial ultrasound stimulation.","authors":"Hang Song, Ruoyu Chen, Liyuan Ren, Junfeng Sun, Shanbao Tong","doi":"10.1007/s11517-025-03290-5","DOIUrl":null,"url":null,"abstract":"<p><p>Previous studies reported baseline state-dependent effects on neural and hemodynamic responses to transcranial ultrasound stimulation. However, due to neurovascular coupling, neither neural nor hemodynamic baseline alone can fully explain the ultrasound-induced responses. In this study, using a general linear model, we aimed to investigate the roles of both neural and hemodynamic baseline status as well as their interactions in ultrasound-induced responses. Thirty Sprague-Dawley rats were randomly assigned to Hypoxia, Hyperoxia, and Normoxia groups. The baseline states were altered by changing the oxygen concentrations. Micro-electrode and laser speckle contrast imaging were used to record local field potentials and cerebral blood flow during resting, before, and after ultrasound stimulation, respectively. We found that baseline neural activity played a positive role in neural response (Coefficient = 0.634, t = 1.748, p = 0.096, <math> <mrow><msubsup><mi>η</mi> <mi>p</mi> <mn>2</mn></msubsup> </mrow> </math> = 0.133), but a negative role in hemodynamic response (Coefficient = <math><mo>-</mo></math> 0.060, t = <math><mo>-</mo></math> 1.996, p = 0.060, <math> <mrow><msubsup><mi>η</mi> <mi>p</mi> <mn>2</mn></msubsup> </mrow> </math> = 0.166). Baseline hemodynamic activity also had a significantly negative correlation with the hemodynamic response (Coefficient = <math><mo>-</mo></math> 0.760, t = <math><mo>-</mo></math> 3.947, p <math><mrow><mo><</mo></mrow> </math> 0.001, <math> <mrow><msubsup><mi>η</mi> <mi>p</mi> <mn>2</mn></msubsup> </mrow> </math> = 0.438). This study enriched our understanding of state-dependent effects underlying the neurovascular activation by ultrasound stimulation.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03290-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Previous studies reported baseline state-dependent effects on neural and hemodynamic responses to transcranial ultrasound stimulation. However, due to neurovascular coupling, neither neural nor hemodynamic baseline alone can fully explain the ultrasound-induced responses. In this study, using a general linear model, we aimed to investigate the roles of both neural and hemodynamic baseline status as well as their interactions in ultrasound-induced responses. Thirty Sprague-Dawley rats were randomly assigned to Hypoxia, Hyperoxia, and Normoxia groups. The baseline states were altered by changing the oxygen concentrations. Micro-electrode and laser speckle contrast imaging were used to record local field potentials and cerebral blood flow during resting, before, and after ultrasound stimulation, respectively. We found that baseline neural activity played a positive role in neural response (Coefficient = 0.634, t = 1.748, p = 0.096, = 0.133), but a negative role in hemodynamic response (Coefficient = 0.060, t = 1.996, p = 0.060, = 0.166). Baseline hemodynamic activity also had a significantly negative correlation with the hemodynamic response (Coefficient = 0.760, t = 3.947, p 0.001, = 0.438). This study enriched our understanding of state-dependent effects underlying the neurovascular activation by ultrasound stimulation.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).