Chloe Qinyu Zhu, Muhang Tian, Lesia Semenova, Jiachang Liu, Jack Xu, Joseph Scarpa, Cynthia Rudin
{"title":"Fast and interpretable mortality risk scores for critical care patients.","authors":"Chloe Qinyu Zhu, Muhang Tian, Lesia Semenova, Jiachang Liu, Jack Xu, Joseph Scarpa, Cynthia Rudin","doi":"10.1093/jamia/ocae318","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Prediction of mortality in intensive care unit (ICU) patients typically relies on black box models (that are unacceptable for use in hospitals) or hand-tuned interpretable models (that might lead to the loss in performance). We aim to bridge the gap between these 2 categories by building on modern interpretable machine learning (ML) techniques to design interpretable mortality risk scores that are as accurate as black boxes.</p><p><strong>Material and methods: </strong>We developed a new algorithm, GroupFasterRisk, which has several important benefits: it uses both hard and soft direct sparsity regularization, it incorporates group sparsity to allow more cohesive models, it allows for monotonicity constraint to include domain knowledge, and it produces many equally good models, which allows domain experts to choose among them. For evaluation, we leveraged the largest existing public ICU monitoring datasets (MIMIC III and eICU).</p><p><strong>Results: </strong>Models produced by GroupFasterRisk outperformed OASIS and SAPS II scores and performed similarly to APACHE IV/IVa while using at most a third of the parameters. For patients with sepsis/septicemia, acute myocardial infarction, heart failure, and acute kidney failure, GroupFasterRisk models outperformed OASIS and SOFA. Finally, different mortality prediction ML approaches performed better based on variables selected by GroupFasterRisk as compared to OASIS variables.</p><p><strong>Discussion: </strong>Group Faster Risk's models performed better than risk scores currently used in hospitals, and on par with black box ML models, while being orders of magnitude sparser. Because GroupFasterRisk produces a variety of risk scores, it allows design flexibility-the key enabler of practical model creation.</p><p><strong>Conclusion: </strong>Group Faster Risk is a fast, accessible, and flexible procedure that allows learning a diverse set of sparse risk scores for mortality prediction.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocae318","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Prediction of mortality in intensive care unit (ICU) patients typically relies on black box models (that are unacceptable for use in hospitals) or hand-tuned interpretable models (that might lead to the loss in performance). We aim to bridge the gap between these 2 categories by building on modern interpretable machine learning (ML) techniques to design interpretable mortality risk scores that are as accurate as black boxes.
Material and methods: We developed a new algorithm, GroupFasterRisk, which has several important benefits: it uses both hard and soft direct sparsity regularization, it incorporates group sparsity to allow more cohesive models, it allows for monotonicity constraint to include domain knowledge, and it produces many equally good models, which allows domain experts to choose among them. For evaluation, we leveraged the largest existing public ICU monitoring datasets (MIMIC III and eICU).
Results: Models produced by GroupFasterRisk outperformed OASIS and SAPS II scores and performed similarly to APACHE IV/IVa while using at most a third of the parameters. For patients with sepsis/septicemia, acute myocardial infarction, heart failure, and acute kidney failure, GroupFasterRisk models outperformed OASIS and SOFA. Finally, different mortality prediction ML approaches performed better based on variables selected by GroupFasterRisk as compared to OASIS variables.
Discussion: Group Faster Risk's models performed better than risk scores currently used in hospitals, and on par with black box ML models, while being orders of magnitude sparser. Because GroupFasterRisk produces a variety of risk scores, it allows design flexibility-the key enabler of practical model creation.
Conclusion: Group Faster Risk is a fast, accessible, and flexible procedure that allows learning a diverse set of sparse risk scores for mortality prediction.
期刊介绍:
JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.