A generative deep neural network for pan-digestive tract cancer survival analysis.

IF 4 3区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Lekai Xu, Tianjun Lan, Yiqian Huang, Liansheng Wang, Junqi Lin, Xinpeng Song, Hui Tang, Haotian Cao, Hua Chai
{"title":"A generative deep neural network for pan-digestive tract cancer survival analysis.","authors":"Lekai Xu, Tianjun Lan, Yiqian Huang, Liansheng Wang, Junqi Lin, Xinpeng Song, Hui Tang, Haotian Cao, Hua Chai","doi":"10.1186/s13040-025-00426-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The accurate identification of molecular subtypes in digestive tract cancer (DTC) is crucial for making informed treatment decisions and selecting potential biomarkers. With the rapid advancement of artificial intelligence, various machine learning algorithms have been successfully applied in this field. However, the complexity and high dimensionality of the data features may lead to overlapping and ambiguous subtypes during clustering.</p><p><strong>Results: </strong>In this study, we propose GDEC, a multi-task generative deep neural network designed for precise digestive tract cancer subtyping. The network optimization process involves employing an integrated loss function consisting of two modules: the generative-adversarial module facilitates spatial data distribution understanding for extracting high-quality information, while the clustering module aids in identifying disease subtypes. The experiments conducted on digestive tract cancer datasets demonstrate that GDEC exhibits exceptional performance compared to other advanced methodologies and can separate different cancer molecular subtypes that possess both statistical and biological significance. Subsequently, 21 hub genes related to pan-DTC heterogeneity and prognosis were identified based on the subtypes clustered by GDEC. The following drug analysis suggested Dasatinib and YM155 as potential therapeutic agents for improving the prognosis of patients in pan-DTC immunotherapy, thereby contributing to the enhancement of cancer patient survival.</p><p><strong>Conclusions: </strong>The experiment indicate that GDEC outperforms better than other deep-learning-based methods, and the interpretable algorithm can select biologically significant genes and potential drugs for DTC treatment.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"18 1","pages":"9"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771125/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-025-00426-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The accurate identification of molecular subtypes in digestive tract cancer (DTC) is crucial for making informed treatment decisions and selecting potential biomarkers. With the rapid advancement of artificial intelligence, various machine learning algorithms have been successfully applied in this field. However, the complexity and high dimensionality of the data features may lead to overlapping and ambiguous subtypes during clustering.

Results: In this study, we propose GDEC, a multi-task generative deep neural network designed for precise digestive tract cancer subtyping. The network optimization process involves employing an integrated loss function consisting of two modules: the generative-adversarial module facilitates spatial data distribution understanding for extracting high-quality information, while the clustering module aids in identifying disease subtypes. The experiments conducted on digestive tract cancer datasets demonstrate that GDEC exhibits exceptional performance compared to other advanced methodologies and can separate different cancer molecular subtypes that possess both statistical and biological significance. Subsequently, 21 hub genes related to pan-DTC heterogeneity and prognosis were identified based on the subtypes clustered by GDEC. The following drug analysis suggested Dasatinib and YM155 as potential therapeutic agents for improving the prognosis of patients in pan-DTC immunotherapy, thereby contributing to the enhancement of cancer patient survival.

Conclusions: The experiment indicate that GDEC outperforms better than other deep-learning-based methods, and the interpretable algorithm can select biologically significant genes and potential drugs for DTC treatment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biodata Mining
Biodata Mining MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
7.90
自引率
0.00%
发文量
28
审稿时长
23 weeks
期刊介绍: BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data. Topical areas include, but are not limited to: -Development, evaluation, and application of novel data mining and machine learning algorithms. -Adaptation, evaluation, and application of traditional data mining and machine learning algorithms. -Open-source software for the application of data mining and machine learning algorithms. -Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies. -Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信