scHiGex: predicting single-cell gene expression based on single-cell Hi-C data.

IF 4 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2025-01-27 eCollection Date: 2025-03-01 DOI:10.1093/nargab/lqaf002
Bishal Shrestha, Andrew Jordan Siciliano, Hao Zhu, Tong Liu, Zheng Wang
{"title":"scHiGex: predicting single-cell gene expression based on single-cell Hi-C data.","authors":"Bishal Shrestha, Andrew Jordan Siciliano, Hao Zhu, Tong Liu, Zheng Wang","doi":"10.1093/nargab/lqaf002","DOIUrl":null,"url":null,"abstract":"<p><p>A novel biochemistry experiment named HiRES has been developed to capture both the chromosomal conformations and gene expression levels of individual single cells simultaneously. Nevertheless, when compared to the extensive volume of single-cell Hi-C data generated from individual cells, the number of datasets produced from this experiment remains limited in the scientific community. Hence, there is a requirement for a computational tool that can forecast the levels of gene expression in individual cells using single-cell Hi-C data from the same cells. We trained a graph transformer called scHiGex that accurately and effectively predicts gene expression levels based on single-cell Hi-C data. We conducted a benchmark of scHiGex that demonstrated notable performance on the predictions with an average absolute error of 0.07. Furthermore, the predicted levels of gene expression led to precise categorizations (adjusted Rand index score 1) of cells into distinct cell types, demonstrating that our model effectively captured the heterogeneity between individual cell types. scHiGex is freely available at https://github.com/zwang-bioinformatics/scHiGex.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"7 1","pages":"lqaf002"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770341/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqaf002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

A novel biochemistry experiment named HiRES has been developed to capture both the chromosomal conformations and gene expression levels of individual single cells simultaneously. Nevertheless, when compared to the extensive volume of single-cell Hi-C data generated from individual cells, the number of datasets produced from this experiment remains limited in the scientific community. Hence, there is a requirement for a computational tool that can forecast the levels of gene expression in individual cells using single-cell Hi-C data from the same cells. We trained a graph transformer called scHiGex that accurately and effectively predicts gene expression levels based on single-cell Hi-C data. We conducted a benchmark of scHiGex that demonstrated notable performance on the predictions with an average absolute error of 0.07. Furthermore, the predicted levels of gene expression led to precise categorizations (adjusted Rand index score 1) of cells into distinct cell types, demonstrating that our model effectively captured the heterogeneity between individual cell types. scHiGex is freely available at https://github.com/zwang-bioinformatics/scHiGex.

scHiGex:基于单细胞Hi-C数据预测单细胞基因表达。
一种名为HiRES的新型生物化学实验已经开发出来,可以同时捕获单个细胞的染色体构象和基因表达水平。然而,与从单个细胞中产生的大量单细胞Hi-C数据相比,该实验产生的数据集数量在科学界仍然有限。因此,需要一种计算工具,可以使用来自相同细胞的单细胞Hi-C数据预测单个细胞中的基因表达水平。我们训练了一个名为scHiGex的图形转换器,它可以基于单细胞Hi-C数据准确有效地预测基因表达水平。我们对scHiGex进行了基准测试,结果显示预测的平均绝对误差为0.07。此外,预测的基因表达水平导致细胞精确分类(调整Rand指数得分1)为不同的细胞类型,表明我们的模型有效地捕获了个体细胞类型之间的异质性。scHiGex可在https://github.com/zwang-bioinformatics/scHiGex免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信