Restoration of G to A mutated transcripts using the MS2-ADAR1 system.

4区 生物学 Q3 Biochemistry, Genetics and Molecular Biology
Methods in enzymology Pub Date : 2025-01-01 Epub Date: 2024-12-05 DOI:10.1016/bs.mie.2024.11.031
Sonali Bhakta, Toshifumi Tsukahara
{"title":"Restoration of G to A mutated transcripts using the MS2-ADAR1 system.","authors":"Sonali Bhakta, Toshifumi Tsukahara","doi":"10.1016/bs.mie.2024.11.031","DOIUrl":null,"url":null,"abstract":"<p><p>Site-directed RNA editing (SDRE) holds significant promise for treating genetic disorders resulting from point mutations. Gene therapy, for common genetic illnesses is becoming more popular and, although viable treatments for genetic disorders are scarce, stop codon mutation-related conditions may benefit from gene editing. Effective SDRE generally depends on introducing many guideRNA molecules relative to the target gene; however, large ratios cannot be achieved in the context of gene therapy applications. Gene-encoded information can be altered, and functionally diverse proteins produced from a single gene by restoration of point-mutated RNA molecules using SDRE. Adenosine deaminase acting on RNA (ADAR) is an RNA-editing enzyme, that can specifically convert adenosine (A) residues to inosines (I), which are translated as guanosine (G). MS2 system along with ADAR1 deaminase domain can target a particular A and repair G to A mutations. In this study, we used the RNA binding MS2 coat protein fused with the ADAR1 deaminase domain controlled by the CMV promoter, and a 19 bp guide RNA (complementary to the target mRNA sequence) engineered with 6 × MS2 stem-loops downstream or 1 × MS2 stem-loop (double MS2) on either side, controlled by the U6 promoter. When the EGFP TGG codon (tryptophan) was altered to an amber (TAG), opal (TGA), or ochre (TAA) stop codon, the modified ADAR1 deaminase domain could convert A-to-I (G) at the edited sites. It is anticipated that successful establishment of this technique will result in a new era in gene therapy, allowing remarkably efficient gene repair, even in vivo.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"710 ","pages":"229-240"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2024.11.031","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Site-directed RNA editing (SDRE) holds significant promise for treating genetic disorders resulting from point mutations. Gene therapy, for common genetic illnesses is becoming more popular and, although viable treatments for genetic disorders are scarce, stop codon mutation-related conditions may benefit from gene editing. Effective SDRE generally depends on introducing many guideRNA molecules relative to the target gene; however, large ratios cannot be achieved in the context of gene therapy applications. Gene-encoded information can be altered, and functionally diverse proteins produced from a single gene by restoration of point-mutated RNA molecules using SDRE. Adenosine deaminase acting on RNA (ADAR) is an RNA-editing enzyme, that can specifically convert adenosine (A) residues to inosines (I), which are translated as guanosine (G). MS2 system along with ADAR1 deaminase domain can target a particular A and repair G to A mutations. In this study, we used the RNA binding MS2 coat protein fused with the ADAR1 deaminase domain controlled by the CMV promoter, and a 19 bp guide RNA (complementary to the target mRNA sequence) engineered with 6 × MS2 stem-loops downstream or 1 × MS2 stem-loop (double MS2) on either side, controlled by the U6 promoter. When the EGFP TGG codon (tryptophan) was altered to an amber (TAG), opal (TGA), or ochre (TAA) stop codon, the modified ADAR1 deaminase domain could convert A-to-I (G) at the edited sites. It is anticipated that successful establishment of this technique will result in a new era in gene therapy, allowing remarkably efficient gene repair, even in vivo.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods in enzymology
Methods in enzymology 生物-生化研究方法
CiteScore
2.90
自引率
0.00%
发文量
308
审稿时长
3-6 weeks
期刊介绍: The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信