{"title":"Mouse models for understanding physiological functions of ADARs.","authors":"Qinyi Zhang, Carl R Walkley","doi":"10.1016/bs.mie.2024.11.024","DOIUrl":null,"url":null,"abstract":"<p><p>Adenosine-to-inosine (A-to-I) editing, is a highly prevalent posttranscriptional modification of RNA, mediated by the adenosine deaminases acting on RNA (ADAR) proteins. Mammalian transcriptomes contain tens of thousands to millions of A-to-I editing events. Mutations in ADAR can result in rare autoinflammatory disorders such as Aicardi-Goutières syndrome (AGS) through to irreversible conditions such as motor neuron disease, amyotrophic lateral sclerosis (ALS). Mouse models have played an important role in our current understanding of the physiology of ADAR proteins. With the advancement of genetic engineering technologies, a number of new mouse models have been recently generated, each providing additional insight into ADAR function. This review highlights both past and current mouse models, exploring the methodologies used in their generation, their respective discoveries, and the significance of these findings in relation to human ADAR physiology.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"710 ","pages":"153-185"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2024.11.024","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Adenosine-to-inosine (A-to-I) editing, is a highly prevalent posttranscriptional modification of RNA, mediated by the adenosine deaminases acting on RNA (ADAR) proteins. Mammalian transcriptomes contain tens of thousands to millions of A-to-I editing events. Mutations in ADAR can result in rare autoinflammatory disorders such as Aicardi-Goutières syndrome (AGS) through to irreversible conditions such as motor neuron disease, amyotrophic lateral sclerosis (ALS). Mouse models have played an important role in our current understanding of the physiology of ADAR proteins. With the advancement of genetic engineering technologies, a number of new mouse models have been recently generated, each providing additional insight into ADAR function. This review highlights both past and current mouse models, exploring the methodologies used in their generation, their respective discoveries, and the significance of these findings in relation to human ADAR physiology.
期刊介绍:
The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.