Forest Soil pH and Dissolved Organic Matter Aromaticity Are Distinct Drivers for Soil Microbial Community and Carbon Metabolism Potential.

IF 3.3 3区 生物学 Q2 ECOLOGY
Zongxiao Zhang, Qiang Zhang, Xue Guo, Zhenzhong Zeng, Yinghui Wang, Peng Zhang, Dengzhou Gao, Guisen Deng, Guodong Sun, Yuanxi Yang, Junjian Wang
{"title":"Forest Soil pH and Dissolved Organic Matter Aromaticity Are Distinct Drivers for Soil Microbial Community and Carbon Metabolism Potential.","authors":"Zongxiao Zhang, Qiang Zhang, Xue Guo, Zhenzhong Zeng, Yinghui Wang, Peng Zhang, Dengzhou Gao, Guisen Deng, Guodong Sun, Yuanxi Yang, Junjian Wang","doi":"10.1007/s00248-025-02493-5","DOIUrl":null,"url":null,"abstract":"<p><p>The ecological niche separation of microbial interactions in forest ecosystems is critical to maintaining ecological balance and biodiversity and has yet to be comprehensively explored in microbial ecology. This study investigated the impacts of soil properties on microbial interactions and carbon metabolism potential in forest soils across 67 sites in China. Using redundancy analysis and random forest models, we identified soil pH and dissolved organic matter (DOM) aromaticity as the primary drivers of microbial interactions, representing abiotic conditions and resource niches, respectively. Our network comparison results highlighted significant differences in microbial interactions between acidic and non-acidic soils, suggesting the critical influences of abiotic conditions on microbial interactions. Conversely, abiotic resource niches played a more pivotal role in shaping the carbon metabolism of soil microbes, supporting the concept that resource niche-based processes drive microbial carbon cycling. Additionally, we demonstrated that microbial interactions contributed significantly to ecosystem function stability and served as potential ecological indicators of microbial functional resilience under environmental stress. These insights emphasize the critical need to preserve microbial interactions for effective forest ecosystem management and projection of ecological outcomes in response to future environmental changes.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"177"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772527/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00248-025-02493-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The ecological niche separation of microbial interactions in forest ecosystems is critical to maintaining ecological balance and biodiversity and has yet to be comprehensively explored in microbial ecology. This study investigated the impacts of soil properties on microbial interactions and carbon metabolism potential in forest soils across 67 sites in China. Using redundancy analysis and random forest models, we identified soil pH and dissolved organic matter (DOM) aromaticity as the primary drivers of microbial interactions, representing abiotic conditions and resource niches, respectively. Our network comparison results highlighted significant differences in microbial interactions between acidic and non-acidic soils, suggesting the critical influences of abiotic conditions on microbial interactions. Conversely, abiotic resource niches played a more pivotal role in shaping the carbon metabolism of soil microbes, supporting the concept that resource niche-based processes drive microbial carbon cycling. Additionally, we demonstrated that microbial interactions contributed significantly to ecosystem function stability and served as potential ecological indicators of microbial functional resilience under environmental stress. These insights emphasize the critical need to preserve microbial interactions for effective forest ecosystem management and projection of ecological outcomes in response to future environmental changes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Ecology
Microbial Ecology 生物-海洋与淡水生物学
CiteScore
6.90
自引率
2.80%
发文量
212
审稿时长
3-8 weeks
期刊介绍: The journal Microbial Ecology was founded more than 50 years ago by Dr. Ralph Mitchell, Gordon McKay Professor of Applied Biology at Harvard University in Cambridge, MA. The journal has evolved to become a premier location for the presentation of manuscripts that represent advances in the field of microbial ecology. The journal has become a dedicated international forum for the presentation of high-quality scientific investigations of how microorganisms interact with their environment, with each other and with their hosts. Microbial Ecology offers articles of original research in full paper and note formats, as well as brief reviews and topical position papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信