{"title":"Boosting human immunology: harnessing the potential of immune organoids.","authors":"Maximilian Moll, Dirk Baumjohann","doi":"10.1038/s44321-025-00193-8","DOIUrl":null,"url":null,"abstract":"<p><p>Studying the human immune system in vivo is challenging and often not possible. Therefore, most human immunology studies have been predominantly confined to peripheral blood analyses, which by themselves have inherent limitations, as many immune reactions take place within tissues. For example, potent antibody responses that contribute to fighting infections and provide protection following vaccination require cellular interactions between B cells and T cells in specialized micro-anatomical structures called germinal centers, which are found in secondary lymphoid organs such as spleen, lymph nodes, and tonsils. Thus, there is a clear demand for novel enhanced experimental systems that faithfully recapitulate the intricate dynamics of the human immune system as much as possible. In this review, we discuss recent advances in versatile human tonsil/adenoid tissue-based ex vivo immune organoid cultures as well as related cancer and autoimmunity-focused experimental setups. These systems have been implemented as translational immunology platforms for in-depth analyses of human B and T cell-mediated immune responses, thereby facilitating mechanistic studies as well as drug and vaccine testing in a human-first approach.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s44321-025-00193-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Studying the human immune system in vivo is challenging and often not possible. Therefore, most human immunology studies have been predominantly confined to peripheral blood analyses, which by themselves have inherent limitations, as many immune reactions take place within tissues. For example, potent antibody responses that contribute to fighting infections and provide protection following vaccination require cellular interactions between B cells and T cells in specialized micro-anatomical structures called germinal centers, which are found in secondary lymphoid organs such as spleen, lymph nodes, and tonsils. Thus, there is a clear demand for novel enhanced experimental systems that faithfully recapitulate the intricate dynamics of the human immune system as much as possible. In this review, we discuss recent advances in versatile human tonsil/adenoid tissue-based ex vivo immune organoid cultures as well as related cancer and autoimmunity-focused experimental setups. These systems have been implemented as translational immunology platforms for in-depth analyses of human B and T cell-mediated immune responses, thereby facilitating mechanistic studies as well as drug and vaccine testing in a human-first approach.
期刊介绍:
EMBO Molecular Medicine is an open access journal in the field of experimental medicine, dedicated to science at the interface between clinical research and basic life sciences. In addition to human data, we welcome original studies performed in cells and/or animals provided they demonstrate human disease relevance.
To enhance and better specify our commitment to precision medicine, we have expanded the scope of EMM and call for contributions in the following fields:
Environmental health and medicine, in particular studies in the field of environmental medicine in its functional and mechanistic aspects (exposome studies, toxicology, biomarkers, modeling, and intervention).
Clinical studies and case reports - Human clinical studies providing decisive clues how to control a given disease (epidemiological, pathophysiological, therapeutic, and vaccine studies). Case reports supporting hypothesis-driven research on the disease.
Biomedical technologies - Studies that present innovative materials, tools, devices, and technologies with direct translational potential and applicability (imaging technologies, drug delivery systems, tissue engineering, and AI)