{"title":"Hydrogeochemical characterization of shallow and deep groundwater for drinking and irrigation water quality index of Kathmandu Valley, Nepal.","authors":"Manisha Ghimire, Naina Byanjankar, Tejendra Regmi, Rachna Jha, Dev Raj Joshi, Tista Prasai Joshi","doi":"10.1007/s10653-025-02372-5","DOIUrl":null,"url":null,"abstract":"<p><p>A comprehensive hydrogeochemical analysis of 156 groundwater samples (106 shallow and 50 deep) was conducted in the Kathmandu Valley, Nepal. This study addresses a significant research gap by focusing on the hydro-geochemical composition and contamination of groundwater in the Kathmandu Valley, an area with limited detailed assessments. The novelty of this work lies in its comprehensive analysis of both shallow and deep groundwater, particularly concerning the high concentration of contaminants like arsenic, microbial pathogens, and ammonium, which are critical for public health. The results indicate that the mean concentration of turbidity, iron (Fe), and total coliform (TC) was exceeded the permissible range by National Drinking Water Quality Standards (NDWQS). Hydro-geochemical analysis using the Piper and Chadha diagrams showed the Ca<sup>2</sup>⁺-Mg<sup>2</sup>⁺-HCO₃ dominance, suggesting carbonate rock weathering and ion exchange as primary processes. Gibbs and mixing diagrams further supported these findings. The Water Quality Index ranged from 3.93 to 442.11 (mean: 66.87) for shallow water while 8.07 to 252.87 (mean: 79.24) with turbidity, iron, and ammonia significantly contributing to the overall index. Salinity hazard assessment considering total dissolved solids, sodium adsorption ratio, sodium percentage, magnesium adsorption ratio, and Kelly ratios, indicated that shallow and deep groundwater samples are suitable for irrigation, as confirmed by Wilcox diagrams. This study provides valuable insights into the groundwater quality of Kathmandu Valley and highlights the need for effective management strategies to ensure sustainable use of this vital resource, providing a nuanced understanding of groundwater quality and its implications for water management in the region. The findings can inform water treatment practices, policy-making, and future research, ultimately aiding in the development of safer and more sustainable groundwater management practices for the region.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 3","pages":"61"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-025-02372-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
A comprehensive hydrogeochemical analysis of 156 groundwater samples (106 shallow and 50 deep) was conducted in the Kathmandu Valley, Nepal. This study addresses a significant research gap by focusing on the hydro-geochemical composition and contamination of groundwater in the Kathmandu Valley, an area with limited detailed assessments. The novelty of this work lies in its comprehensive analysis of both shallow and deep groundwater, particularly concerning the high concentration of contaminants like arsenic, microbial pathogens, and ammonium, which are critical for public health. The results indicate that the mean concentration of turbidity, iron (Fe), and total coliform (TC) was exceeded the permissible range by National Drinking Water Quality Standards (NDWQS). Hydro-geochemical analysis using the Piper and Chadha diagrams showed the Ca2⁺-Mg2⁺-HCO₃ dominance, suggesting carbonate rock weathering and ion exchange as primary processes. Gibbs and mixing diagrams further supported these findings. The Water Quality Index ranged from 3.93 to 442.11 (mean: 66.87) for shallow water while 8.07 to 252.87 (mean: 79.24) with turbidity, iron, and ammonia significantly contributing to the overall index. Salinity hazard assessment considering total dissolved solids, sodium adsorption ratio, sodium percentage, magnesium adsorption ratio, and Kelly ratios, indicated that shallow and deep groundwater samples are suitable for irrigation, as confirmed by Wilcox diagrams. This study provides valuable insights into the groundwater quality of Kathmandu Valley and highlights the need for effective management strategies to ensure sustainable use of this vital resource, providing a nuanced understanding of groundwater quality and its implications for water management in the region. The findings can inform water treatment practices, policy-making, and future research, ultimately aiding in the development of safer and more sustainable groundwater management practices for the region.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.