Whole genome sequencing and analysis of benzo(a)pyrene-degrading bacteria Bacillus cereus M72-4.

IF 2.3 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Genome Pub Date : 2025-01-01 DOI:10.1139/gen-2024-0114
Aofei Jin, Dilbar Tursun, Lirong Tan, Zhuonan Yang, Zhixian Duo, Yanan Qin, Rui Zhang
{"title":"Whole genome sequencing and analysis of benzo(a)pyrene-degrading bacteria <i>Bacillus cereus</i> M72-4.","authors":"Aofei Jin, Dilbar Tursun, Lirong Tan, Zhuonan Yang, Zhixian Duo, Yanan Qin, Rui Zhang","doi":"10.1139/gen-2024-0114","DOIUrl":null,"url":null,"abstract":"<p><p>Benzo(a)pyrene produced by food during high-temperature process enters the body through ingestion, which causes food safety issues to the human body. To alleviate the harm of foodborne benzo(a)pyrene to human health, a strain that can degrade benzo(a)pyrene was screened from Kefir, a traditional fermented product in Xinjiang. <i>Bacillus cereus</i> M72-4 is a Gram-positive bacteria sourced from Xinjiang traditional fermented product Kefir; under benzo(a)pyrene stress conditions, there was 69.39% degradation rate of 20 mg/L benzo(a)pyrene by strain M72-4 after incubation for 72 h. The whole genome of M72-4 was sequenced using PacBio sequencing technology in this study. The genome size was 5754 801 bp and a GC content was 35.24%; a total of 5719 coding genes were predicted bioinformatically. Through functional database annotation, it was found that the strain has a total of 219 genes involved in the transportation and metabolism of hydrocarbons, a total of 9 metabolic pathways related to the degradation and metabolism of exogenous substances, and a total of 67 coding genes. According to the Kyoto Encyclopedia of Genes and Genomes database annotation results, a key enzyme related to benzo(a)pyrene degradation, catechol 2,3-dioxygenase, was detected in the genome data of <i>Bacillus cereus</i> M72-4, encoding genes <i>dmpB</i> and <i>xylE</i>, respectively. There are also monooxygenases and dehydrogenases. Therefore, it can be inferred that this strain mainly degrades benzo(a)pyrene through benzoate metabolic.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":"1-9"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/gen-2024-0114","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Benzo(a)pyrene produced by food during high-temperature process enters the body through ingestion, which causes food safety issues to the human body. To alleviate the harm of foodborne benzo(a)pyrene to human health, a strain that can degrade benzo(a)pyrene was screened from Kefir, a traditional fermented product in Xinjiang. Bacillus cereus M72-4 is a Gram-positive bacteria sourced from Xinjiang traditional fermented product Kefir; under benzo(a)pyrene stress conditions, there was 69.39% degradation rate of 20 mg/L benzo(a)pyrene by strain M72-4 after incubation for 72 h. The whole genome of M72-4 was sequenced using PacBio sequencing technology in this study. The genome size was 5754 801 bp and a GC content was 35.24%; a total of 5719 coding genes were predicted bioinformatically. Through functional database annotation, it was found that the strain has a total of 219 genes involved in the transportation and metabolism of hydrocarbons, a total of 9 metabolic pathways related to the degradation and metabolism of exogenous substances, and a total of 67 coding genes. According to the Kyoto Encyclopedia of Genes and Genomes database annotation results, a key enzyme related to benzo(a)pyrene degradation, catechol 2,3-dioxygenase, was detected in the genome data of Bacillus cereus M72-4, encoding genes dmpB and xylE, respectively. There are also monooxygenases and dehydrogenases. Therefore, it can be inferred that this strain mainly degrades benzo(a)pyrene through benzoate metabolic.

全基因组测序和苯并(a)芘降解细菌蜡样芽孢杆菌 M72-4 的分析。
食品在高温过程中产生的苯并(a)芘通过摄入进入人体,对人体造成食品安全问题。为减轻食源性苯并a芘对人体健康的危害,从新疆传统发酵产品开菲尔中筛选出一株能降解苯并a芘的菌株。蜡样芽孢杆菌M72-4是一种来源于新疆传统发酵产品开非尔的革兰氏阳性菌,菌株M72-4在苯并(a)芘胁迫条件下,培养72 h后对苯并(a)芘的降解率为69.39%。本研究采用PacBio测序技术对菌株M72-4进行全基因组测序。基因组大小为5754801 bp, GC含量为35.24%,生物信息学预测了5719个编码基因。通过功能数据库注释发现,该菌株共有219个参与碳氢化合物运输代谢的基因,9个与外源物质降解代谢相关的代谢途径,67个编码基因。根据KEGG数据库注释结果,蜡样芽孢杆菌M72-4的基因组数据中检测到与苯并(a)芘降解相关的关键酶——儿儿酚2,3-双加氧酶,分别编码基因dmpB和xylE;还有单加氧酶和脱氢酶。因此,可以推断该菌株主要通过苯甲酸盐代谢降解苯并(a)芘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genome
Genome 生物-生物工程与应用微生物
CiteScore
5.30
自引率
3.20%
发文量
42
审稿时长
6-12 weeks
期刊介绍: Genome is a monthly journal, established in 1959, that publishes original research articles, reviews, mini-reviews, current opinions, and commentaries. Areas of interest include general genetics and genomics, cytogenetics, molecular and evolutionary genetics, developmental genetics, population genetics, phylogenomics, molecular identification, as well as emerging areas such as ecological, comparative, and functional genomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信