Analysis of a class of two-delay fractional differential equation.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-01-01 DOI:10.1063/5.0240447
Sachin Bhalekar, Pragati Dutta
{"title":"Analysis of a class of two-delay fractional differential equation.","authors":"Sachin Bhalekar, Pragati Dutta","doi":"10.1063/5.0240447","DOIUrl":null,"url":null,"abstract":"<p><p>The differential equations involving two discrete delays are helpful in modeling two different processes in one model. We provide the stability and bifurcation analysis in the fractional order delay differential equation Dαx(t)=ax(t)+bx(t-τ)-bx(t-2τ) in the ab-plane. Various regions of stability include stable, unstable, single stable region (SSR), and stability switch (SS). In the stable region, the system is stable for all the delay values. The region SSR has a critical value of delay that bifurcates the stable and unstable behavior. Switching of stable and unstable behaviors is observed in the SS region.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0240447","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The differential equations involving two discrete delays are helpful in modeling two different processes in one model. We provide the stability and bifurcation analysis in the fractional order delay differential equation Dαx(t)=ax(t)+bx(t-τ)-bx(t-2τ) in the ab-plane. Various regions of stability include stable, unstable, single stable region (SSR), and stability switch (SS). In the stable region, the system is stable for all the delay values. The region SSR has a critical value of delay that bifurcates the stable and unstable behavior. Switching of stable and unstable behaviors is observed in the SS region.

涉及两个离散延迟的微分方程有助于在一个模型中模拟两个不同的过程。我们对 ab 平面上的分数阶延迟微分方程 Dαx(t)=ax(t)+bx(t-τ)-bx(t-2τ) 进行了稳定性和分岔分析。稳定区域包括稳定、不稳定、单一稳定区域(SSR)和稳定开关(SS)。在稳定区域,系统在所有延迟值下都是稳定的。SSR 区域有一个临界延迟值,它使稳定和不稳定行为分叉。在 SS 区域可以观察到稳定和不稳定行为的切换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信