Mean-field approximation for networks with synchrony-driven adaptive coupling.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-01-01 DOI:10.1063/5.0231457
N Fennelly, A Neff, R Lambiotte, A Keane, Á Byrne
{"title":"Mean-field approximation for networks with synchrony-driven adaptive coupling.","authors":"N Fennelly, A Neff, R Lambiotte, A Keane, Á Byrne","doi":"10.1063/5.0231457","DOIUrl":null,"url":null,"abstract":"<p><p>Synaptic plasticity plays a fundamental role in neuronal dynamics, governing how connections between neurons evolve in response to experience. In this study, we extend a network model of θ-neuron oscillators to include a realistic form of adaptive plasticity. In place of the less tractable spike-timing-dependent plasticity, we employ recently validated phase-difference-dependent plasticity rules, which adjust coupling strengths based on the relative phases of θ-neuron oscillators. We explore two distinct implementations of this plasticity: pairwise updates to individual coupling strengths and global updates applied to the mean coupling strength. We derive a mean-field approximation and assess its accuracy by comparing it to θ-neuron simulations across various stability regimes. The synchrony of the system is quantified using the Kuramoto order parameter. Through bifurcation analysis and the calculation of maximal Lyapunov exponents, we uncover interesting phenomena such as bistability and chaotic dynamics via period-doubling and boundary crisis bifurcations. These behaviors emerge as a direct result of adaptive coupling and are absent in systems without such plasticity.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0231457","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Synaptic plasticity plays a fundamental role in neuronal dynamics, governing how connections between neurons evolve in response to experience. In this study, we extend a network model of θ-neuron oscillators to include a realistic form of adaptive plasticity. In place of the less tractable spike-timing-dependent plasticity, we employ recently validated phase-difference-dependent plasticity rules, which adjust coupling strengths based on the relative phases of θ-neuron oscillators. We explore two distinct implementations of this plasticity: pairwise updates to individual coupling strengths and global updates applied to the mean coupling strength. We derive a mean-field approximation and assess its accuracy by comparing it to θ-neuron simulations across various stability regimes. The synchrony of the system is quantified using the Kuramoto order parameter. Through bifurcation analysis and the calculation of maximal Lyapunov exponents, we uncover interesting phenomena such as bistability and chaotic dynamics via period-doubling and boundary crisis bifurcations. These behaviors emerge as a direct result of adaptive coupling and are absent in systems without such plasticity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信