{"title":"Empowering canine genomics: Design and validation of a High-Density SNP array for Indian dogs.","authors":"Raja Kolandanoor Nachiappan, Reena Arora, Ramesh Kumar Vijh, Upasana Sharma, Meenal Raheja, Manisha Sharma, Mehak Maggon, Sonika Ahlawat","doi":"10.1139/gen-2024-0094","DOIUrl":null,"url":null,"abstract":"<p><p>India harbours a substantial population of 9.43 million dogs, showcasing diverse phenotypes and utility. Initiatives focusing on awareness, conservation and informed breeding can greatly enhance the recognition and welfare of the unique Indian canine heritage. This study describes the design and development of a high density SNP array for genomic characterization of Indian dogs. Paired-end (150bp) DNA sequences from four diverse dog populations were generated with 10X coverage, following the standard pipeline of Axiom Array technology for chip design. More than 23 million raw SNPs were initially identified, with 629,597 SNP markers ultimately tiled on the Indian canine array (Axiom_Shwaan) after stringent filtering and processing. With an inter-marker distance of 3.8 kb the Axiom_Shwaan greatly increases the canine genome coverage. The array was validated by genotyping 186 samples representing 11 dog breeds/populations from India. The high call rate (99%) of SNPs on the designed chip indicates its suitability for use in Indian dog populations, reflecting sufficient genetic diversity. The principal component and phylogenetic analyses delineated the native dog breeds into discrete groups. This high-density SNP array will empower future applications in population genetics, breed/selection signature identification, development of trait-specific biomarkers and genome-wide data mining for various canine abilities.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/gen-2024-0094","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
India harbours a substantial population of 9.43 million dogs, showcasing diverse phenotypes and utility. Initiatives focusing on awareness, conservation and informed breeding can greatly enhance the recognition and welfare of the unique Indian canine heritage. This study describes the design and development of a high density SNP array for genomic characterization of Indian dogs. Paired-end (150bp) DNA sequences from four diverse dog populations were generated with 10X coverage, following the standard pipeline of Axiom Array technology for chip design. More than 23 million raw SNPs were initially identified, with 629,597 SNP markers ultimately tiled on the Indian canine array (Axiom_Shwaan) after stringent filtering and processing. With an inter-marker distance of 3.8 kb the Axiom_Shwaan greatly increases the canine genome coverage. The array was validated by genotyping 186 samples representing 11 dog breeds/populations from India. The high call rate (99%) of SNPs on the designed chip indicates its suitability for use in Indian dog populations, reflecting sufficient genetic diversity. The principal component and phylogenetic analyses delineated the native dog breeds into discrete groups. This high-density SNP array will empower future applications in population genetics, breed/selection signature identification, development of trait-specific biomarkers and genome-wide data mining for various canine abilities.
期刊介绍:
Genome is a monthly journal, established in 1959, that publishes original research articles, reviews, mini-reviews, current opinions, and commentaries. Areas of interest include general genetics and genomics, cytogenetics, molecular and evolutionary genetics, developmental genetics, population genetics, phylogenomics, molecular identification, as well as emerging areas such as ecological, comparative, and functional genomics.