Controlling spiral wave dynamics of the BZ system in a modified Oregonator model: From suppression to turbulence.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-01-01 DOI:10.1063/5.0241027
Parvej Khan, Sumana Dutta
{"title":"Controlling spiral wave dynamics of the BZ system in a modified Oregonator model: From suppression to turbulence.","authors":"Parvej Khan, Sumana Dutta","doi":"10.1063/5.0241027","DOIUrl":null,"url":null,"abstract":"<p><p>Spirals are a special class of excitable waves that have its significance in the understanding of cardiac arrests and neuronal transduction. In a theoretical model of the chemical Belousov-Zhabotinsky reaction system, we explore the dynamics of the spatiotemporal patterns that emerge out of competing reaction and diffusion phenomena. By modifying the existing mathematical models of the reaction kinetics, we have been able to explore the explicit effect of hydrogen ion concentration in the system, so as to achieve various regimes of wave activity, from stable spirals to oscillation death. In between the two extremes, we show how instability sets in, with anisotropy leading to drifting spirals, core defects resulting in spiral breakup and turbulence, chaotic oscillations, and target patterns, before the system finally reaches a non-oscillating steady state. On varying other stoichiometric parameters, we also illustrate the changes in system dynamics and wave properties.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0241027","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Spirals are a special class of excitable waves that have its significance in the understanding of cardiac arrests and neuronal transduction. In a theoretical model of the chemical Belousov-Zhabotinsky reaction system, we explore the dynamics of the spatiotemporal patterns that emerge out of competing reaction and diffusion phenomena. By modifying the existing mathematical models of the reaction kinetics, we have been able to explore the explicit effect of hydrogen ion concentration in the system, so as to achieve various regimes of wave activity, from stable spirals to oscillation death. In between the two extremes, we show how instability sets in, with anisotropy leading to drifting spirals, core defects resulting in spiral breakup and turbulence, chaotic oscillations, and target patterns, before the system finally reaches a non-oscillating steady state. On varying other stoichiometric parameters, we also illustrate the changes in system dynamics and wave properties.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信