R Magadani, Derek Tantoh Ndinteh, S Roux, Louisiane Patrick Nangah, Item Justin Atangwho, Daniel Ejim Uti, Esther U Alum, Simeon Ikechukwu Egba
{"title":"Cytotoxic Effects Of <i>Lecaniodiscus Cupanioides</i> (Planch.) Extract and Triterpenoids-derived Gold Nanoparticles On MCF-7 Breast Cancer Cell Lines.","authors":"R Magadani, Derek Tantoh Ndinteh, S Roux, Louisiane Patrick Nangah, Item Justin Atangwho, Daniel Ejim Uti, Esther U Alum, Simeon Ikechukwu Egba","doi":"10.2174/0118715206325529241004064307","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The prevalent disease known as breast cancer has a significant impact on both men's and women's health and quality of life.</p><p><strong>Aim: </strong>The aim of this study was to explore the potential roles of Lecaniodiscus cupanioides (planch.) extract and triterpenoid-derived gold nanoparticles (AuNPs) in cancer therapy, specifically targeting MCF-7 breast cancer cell lines.</p><p><strong>Methods: </strong>Gold nanoparticles were synthesized utilizing triterpenoid (ZJ-AuNPs) and leaf extract from Lecaniodiscus cupanioides (LC-AuNPs). Fourier transform infrared spectroscopy (FTIR), Dynamic light scattering (DLS), High-resolution transmission electron microscopy (HRTEM), and UV-vis spectroscopy were employed to characterize the nanoparticles. Additionally, the MTT assay was used to assess the impact of AuNPs on cancer cell viability using MCF-7 breast cancer cell lines.</p><p><strong>Results: </strong>Analysis of ZJ-AuNPs and LC-AuNPs revealed DLS zeta potentials of -31.8 and -35.8 mV, respectively, and a corresponding UV-vis absorption maxima at 540 and 550 nm. Also, the ZJ-AuNPs and LC-AuNPs had respective zeta-sizes that ranged from 25.84 to 35.98 nm and polydispersive index values between 0.2360 and 0.773.Furthermore, the presence of the chemical groups -OH and -NH was shown to be necessary for the green method of capping and reducing the gold nanoparticles. Nevertheless, a significant decrease in cell viability percentages was noted in the MTT experiment, accompanied by an increase in the quantity or concentration of the nanoparticles for both ZJ-AuNPs and LC-AuNPs.</p><p><strong>Conclusion: </strong>Given the data obtained in this study, the biosynthesized ZJ-AuNPs and LC-AuNPs were shown to possess potent cytotoxic effects on breast cancer cells. Hence, they may be valuable tools in the development of new cancer chemotherapy drugs.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-cancer agents in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118715206325529241004064307","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The prevalent disease known as breast cancer has a significant impact on both men's and women's health and quality of life.
Aim: The aim of this study was to explore the potential roles of Lecaniodiscus cupanioides (planch.) extract and triterpenoid-derived gold nanoparticles (AuNPs) in cancer therapy, specifically targeting MCF-7 breast cancer cell lines.
Methods: Gold nanoparticles were synthesized utilizing triterpenoid (ZJ-AuNPs) and leaf extract from Lecaniodiscus cupanioides (LC-AuNPs). Fourier transform infrared spectroscopy (FTIR), Dynamic light scattering (DLS), High-resolution transmission electron microscopy (HRTEM), and UV-vis spectroscopy were employed to characterize the nanoparticles. Additionally, the MTT assay was used to assess the impact of AuNPs on cancer cell viability using MCF-7 breast cancer cell lines.
Results: Analysis of ZJ-AuNPs and LC-AuNPs revealed DLS zeta potentials of -31.8 and -35.8 mV, respectively, and a corresponding UV-vis absorption maxima at 540 and 550 nm. Also, the ZJ-AuNPs and LC-AuNPs had respective zeta-sizes that ranged from 25.84 to 35.98 nm and polydispersive index values between 0.2360 and 0.773.Furthermore, the presence of the chemical groups -OH and -NH was shown to be necessary for the green method of capping and reducing the gold nanoparticles. Nevertheless, a significant decrease in cell viability percentages was noted in the MTT experiment, accompanied by an increase in the quantity or concentration of the nanoparticles for both ZJ-AuNPs and LC-AuNPs.
Conclusion: Given the data obtained in this study, the biosynthesized ZJ-AuNPs and LC-AuNPs were shown to possess potent cytotoxic effects on breast cancer cells. Hence, they may be valuable tools in the development of new cancer chemotherapy drugs.
期刊介绍:
Formerly: Current Medicinal Chemistry - Anti-Cancer Agents.
Anti-Cancer Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of anti-cancer agents.
Each issue contains a series of timely in-depth reviews and guest edited issues written by leaders in the field covering a range of current topics in cancer medicinal chemistry. The journal only considers high quality research papers for publication.
Anti-Cancer Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cancer drug discovery.