Regulation of pathologic fibroblast functions in digestive diseases: a role for hypoxia?

IF 3.9 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Cian M Ohlendieck, Carlos Matellan, Mario C Manresa
{"title":"Regulation of pathologic fibroblast functions in digestive diseases: a role for hypoxia?","authors":"Cian M Ohlendieck, Carlos Matellan, Mario C Manresa","doi":"10.1152/ajpgi.00277.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The recent uncovering of fibroblast heterogeneity has given great insight into the versatility of the stroma. Among other cellular processes, fibroblasts are now thought to contribute to the coordination of immune responses in a range of chronic inflammatory diseases and cancer. Although the pathologic roles of myofibroblasts, inflammatory fibroblasts, and cancer-associated fibroblasts in disease are reasonably well understood, the mechanisms behind their activation remain to be uncovered. In the gastrointestinal (GI) tract, several interleukins and tumor necrosis factor superfamily members have been identified as possible mediators driving the acquisition of inflammatory and fibrotic properties in fibroblasts. In addition to cytokines, other microenvironmental factors such as nutrient and oxygen availability are likely contributors to this process. In this respect, the phenomenon of low cellular oxygen levels known as hypoxia is common in a plethora of GI diseases. Indeed, the cross talk between hypoxia and inflammation is well-documented, with an abundance of studies suggesting that oxygen-sensing enzymes may have regulatory effects on inflammatory signaling pathways such as NF-κB. However, the impact that this has in GI fibroblasts in the context of chronic diseases has not been fully uncovered. Here we discuss the role of fibroblasts in GI diseases, the mediators that have emerged as regulators of their functions and the potential impact of hypoxia in this process, highlighting areas that require further investigation.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G229-G242"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Gastrointestinal and liver physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpgi.00277.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The recent uncovering of fibroblast heterogeneity has given great insight into the versatility of the stroma. Among other cellular processes, fibroblasts are now thought to contribute to the coordination of immune responses in a range of chronic inflammatory diseases and cancer. Although the pathologic roles of myofibroblasts, inflammatory fibroblasts, and cancer-associated fibroblasts in disease are reasonably well understood, the mechanisms behind their activation remain to be uncovered. In the gastrointestinal (GI) tract, several interleukins and tumor necrosis factor superfamily members have been identified as possible mediators driving the acquisition of inflammatory and fibrotic properties in fibroblasts. In addition to cytokines, other microenvironmental factors such as nutrient and oxygen availability are likely contributors to this process. In this respect, the phenomenon of low cellular oxygen levels known as hypoxia is common in a plethora of GI diseases. Indeed, the cross talk between hypoxia and inflammation is well-documented, with an abundance of studies suggesting that oxygen-sensing enzymes may have regulatory effects on inflammatory signaling pathways such as NF-κB. However, the impact that this has in GI fibroblasts in the context of chronic diseases has not been fully uncovered. Here we discuss the role of fibroblasts in GI diseases, the mediators that have emerged as regulators of their functions and the potential impact of hypoxia in this process, highlighting areas that require further investigation.

消化系统疾病病理成纤维细胞功能的调节:缺氧的作用?
最近发现的成纤维细胞异质性对基质的多功能性有了很大的了解。在其他细胞过程中,成纤维细胞现在被认为有助于协调一系列慢性炎症性疾病和癌症的免疫反应。虽然肌成纤维细胞、炎性成纤维细胞和癌症相关成纤维细胞在疾病中的病理作用已经相当清楚,但它们激活背后的机制仍未被揭示。在胃肠道中,一些白细胞介素和肿瘤坏死因子超家族成员已被确定为驱动成纤维细胞获得炎症和纤维化特性的可能介质。除了细胞因子外,其他微环境因素,如营养和氧气的可用性也可能对这一过程起作用。在这方面,被称为缺氧的低细胞氧水平现象在大量的胃肠道疾病中很常见。事实上,缺氧和炎症之间的相互作用是有据可查的,大量研究表明,氧感应酶可能对NF-κB等炎症信号通路具有调节作用。然而,在慢性疾病的背景下,这对胃肠道成纤维细胞的影响尚未完全揭示。在这里,我们讨论成纤维细胞在胃肠道疾病中的作用,已经出现的调节其功能的介质和缺氧在这一过程中的潜在影响,强调需要进一步研究的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.40
自引率
2.20%
发文量
104
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Gastrointestinal and Liver Physiology publishes original articles pertaining to all aspects of research involving normal or abnormal function of the gastrointestinal tract, hepatobiliary system, and pancreas. Authors are encouraged to submit manuscripts dealing with growth and development, digestion, secretion, absorption, metabolism, and motility relative to these organs, as well as research reports dealing with immune and inflammatory processes and with neural, endocrine, and circulatory control mechanisms that affect these organs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信