Sharun Kuhar, Jung-Hee Seo, Pankaj Jay Pasricha, Michael Camilleri, Rajat Mittal
{"title":"Duodenogastric reflux in health and disease: insights from a computational fluid dynamics model of the stomach.","authors":"Sharun Kuhar, Jung-Hee Seo, Pankaj Jay Pasricha, Michael Camilleri, Rajat Mittal","doi":"10.1152/ajpgi.00241.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The stomach is responsible for physically and chemically processing the ingested meal before controlled emptying into the duodenum through the pyloric sphincter. An incompetent pylorus allows reflux from the duodenum back into the stomach, and if the amount of reflux is large enough, it could alter the low-pH environment of the stomach and erode the mucosal lining of the lumen. In some cases, the regurgitated contents can also reach the esophagus, leading to additional complications. In this work, \"StomachSim\", an in silico model of the fluid dynamics of the stomach, is used to study the mechanism of duodenogastric reflux. The effects of variations in food properties and motility disorders on reflux are investigated. The simulations show that the primary driver of reflux is the relaxation of the antrum after a stomach contraction terminates near the pylorus. The region of the stomach walls exposed to the regurgitated contents depends significantly on the density of the stomach contents. For stomach contents of higher viscosity, the increased pressure required to maintain gastric emptying reduces the amount of duodenogastric reflux. Concomitant stomach motility disorders that weaken the relaxation of the walls also affect the amount of reflux. The study illustrates the utility of in silico models in analyzing the factors at play in gastrointestinal diseases.<b>NEW & NOTEWORTHY</b> An in silico model of the stomach is presented to study the phenomenon of duodenogastric reflux. We use the model to investigate the role of pyloric incompetence, food properties, and gastroparesis on reflux. This first-ever in silico study of duodenogastric reflux provides new insights into the mechanisms and factors implicated in this reflux and the sequelae of conditions that result from the exposure of the stomach lumen to bile.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G411-G425"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Gastrointestinal and liver physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpgi.00241.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The stomach is responsible for physically and chemically processing the ingested meal before controlled emptying into the duodenum through the pyloric sphincter. An incompetent pylorus allows reflux from the duodenum back into the stomach, and if the amount of reflux is large enough, it could alter the low-pH environment of the stomach and erode the mucosal lining of the lumen. In some cases, the regurgitated contents can also reach the esophagus, leading to additional complications. In this work, "StomachSim", an in silico model of the fluid dynamics of the stomach, is used to study the mechanism of duodenogastric reflux. The effects of variations in food properties and motility disorders on reflux are investigated. The simulations show that the primary driver of reflux is the relaxation of the antrum after a stomach contraction terminates near the pylorus. The region of the stomach walls exposed to the regurgitated contents depends significantly on the density of the stomach contents. For stomach contents of higher viscosity, the increased pressure required to maintain gastric emptying reduces the amount of duodenogastric reflux. Concomitant stomach motility disorders that weaken the relaxation of the walls also affect the amount of reflux. The study illustrates the utility of in silico models in analyzing the factors at play in gastrointestinal diseases.NEW & NOTEWORTHY An in silico model of the stomach is presented to study the phenomenon of duodenogastric reflux. We use the model to investigate the role of pyloric incompetence, food properties, and gastroparesis on reflux. This first-ever in silico study of duodenogastric reflux provides new insights into the mechanisms and factors implicated in this reflux and the sequelae of conditions that result from the exposure of the stomach lumen to bile.
期刊介绍:
The American Journal of Physiology-Gastrointestinal and Liver Physiology publishes original articles pertaining to all aspects of research involving normal or abnormal function of the gastrointestinal tract, hepatobiliary system, and pancreas. Authors are encouraged to submit manuscripts dealing with growth and development, digestion, secretion, absorption, metabolism, and motility relative to these organs, as well as research reports dealing with immune and inflammatory processes and with neural, endocrine, and circulatory control mechanisms that affect these organs.