MAI-TargetFisher: A proteome-wide drug target prediction method synergetically enhanced by artificial intelligence and physical modeling.

IF 6.9 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shi-Wei Li, Peng-Xuan Ren, Lin Wang, Qi-Lei Han, Feng-Lei Li, Hong-Lin Li, Fang Bai
{"title":"MAI-TargetFisher: A proteome-wide drug target prediction method synergetically enhanced by artificial intelligence and physical modeling.","authors":"Shi-Wei Li, Peng-Xuan Ren, Lin Wang, Qi-Lei Han, Feng-Lei Li, Hong-Lin Li, Fang Bai","doi":"10.1038/s41401-024-01444-z","DOIUrl":null,"url":null,"abstract":"<p><p>Computational target identification plays a pivotal role in the drug development process. With the significant advancements of deep learning methods for protein structure prediction, the structural coverage of human proteome has increased substantially. This progress inspired the development of the first genome-wide small molecule targets scanning method. Our method aims to localize drug targets and detect potential off-target effects early in the drug discovery process, thereby improving the success rate of drug development. We have constructed a high-quality database of protein structures with annotated potential binding sites, covering 82% of the protein-coding genome. On the basis of this database, to enhance our search capabilities, we have integrated computational techniques, including both artificial intelligence-based and biophysical model-based methods. This integration led to the development of a target identification method called Multi-Algorithm Integrated Target Fisher (MAI-TargetFisher). MAI-TargetFisher leverages the complementary strengths of various methods while minimizing their weaknesses, enabling precise database navigation to generate a reliably ranked set of candidate targets for an active query molecule. Importantly, our work is the first comprehensive scan of protein surfaces across the entire human genome, aimed at evaluating potential small molecule binding sites on each protein. Through a series of evaluations on benchmark and a target identification task, the results demonstrate the high hit rates and good reliability of our method under the validation of wet experiments. We have also made available a freely accessible web server at https://bailab.siais.shanghaitech.edu.cn/mai-targetfisher for non-commercial use.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-024-01444-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Computational target identification plays a pivotal role in the drug development process. With the significant advancements of deep learning methods for protein structure prediction, the structural coverage of human proteome has increased substantially. This progress inspired the development of the first genome-wide small molecule targets scanning method. Our method aims to localize drug targets and detect potential off-target effects early in the drug discovery process, thereby improving the success rate of drug development. We have constructed a high-quality database of protein structures with annotated potential binding sites, covering 82% of the protein-coding genome. On the basis of this database, to enhance our search capabilities, we have integrated computational techniques, including both artificial intelligence-based and biophysical model-based methods. This integration led to the development of a target identification method called Multi-Algorithm Integrated Target Fisher (MAI-TargetFisher). MAI-TargetFisher leverages the complementary strengths of various methods while minimizing their weaknesses, enabling precise database navigation to generate a reliably ranked set of candidate targets for an active query molecule. Importantly, our work is the first comprehensive scan of protein surfaces across the entire human genome, aimed at evaluating potential small molecule binding sites on each protein. Through a series of evaluations on benchmark and a target identification task, the results demonstrate the high hit rates and good reliability of our method under the validation of wet experiments. We have also made available a freely accessible web server at https://bailab.siais.shanghaitech.edu.cn/mai-targetfisher for non-commercial use.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Pharmacologica Sinica
Acta Pharmacologica Sinica 医学-化学综合
CiteScore
15.10
自引率
2.40%
发文量
4365
审稿时长
2 months
期刊介绍: APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信