ROS-regulated SUR1-TRPM4 drives persistent activation of NLRP3 inflammasome in microglia after whole-brain radiation.

IF 6.2 2区 医学 Q1 NEUROSCIENCES
Yuan Chang, Yihua He, Di Wang, Kunxue Zhang, Yuzhen Zhang, Zhentong Li, Shuxin Zeng, Sheng Xiao, Suyue Pan, Kaibin Huang
{"title":"ROS-regulated SUR1-TRPM4 drives persistent activation of NLRP3 inflammasome in microglia after whole-brain radiation.","authors":"Yuan Chang, Yihua He, Di Wang, Kunxue Zhang, Yuzhen Zhang, Zhentong Li, Shuxin Zeng, Sheng Xiao, Suyue Pan, Kaibin Huang","doi":"10.1186/s40478-025-01932-1","DOIUrl":null,"url":null,"abstract":"<p><p>Delayed radiation-induced brain injury (RIBI) characterized by progressive cognitive decline significantly impacts patient outcomes after radiotherapy. The activation of NLRP3 inflammasome within microglia after brain radiation is involved in the progression of RIBI by mediating inflammatory responses. We have previously shown that sulfonylurea receptor 1-transient receptor potential M4 (SUR1-TRPM4) mediates microglial NLRP3-related inflammation following global brain ischemia. However, the role of SUR1-TRPM4 in RIBI remains unclear. Here, we found that whole-brain radiation induced up-regulation and assembly of SUR1-TRPM4, which further activated the NLRP3 inflammasome in microglia and caused persistent neuroinflammation in mice. Blocking SUR1-TRPM4 by glibenclamide or gene deletion of Trpm4 effectively prevented NLRP3-mediated neuroinflammation and alleviated RIBI. Utilizing the mouse model of RIBI and irradiated BV2 cells, we further demonstrated that irradiation caused mitochondrial damage to microglia, leading to violent release of reactive oxygen species (ROS), which enhanced the transcription of SUR1, TRPM4, and NLRP3 inflammasome-related molecules. Moreover, ROS up-regulated ten-eleven translocation 2 (TET2) to enhance TRPM4 expression by mediating the demethylation of the gene promoter, thereby facilitating the assembly of SUR1-TRPM4 in microglia. In summary, this study deciphers that SUR1-TRPM4 crucially mediates the persistent activation of microglial NLRP3 inflammasome under the action of ROS after whole-brain radiation, offering novel therapeutic strategies for delayed RIBI as well as other NLRP3-related neurological disorders involving excessive ROS production.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"13 1","pages":"16"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771008/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40478-025-01932-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Delayed radiation-induced brain injury (RIBI) characterized by progressive cognitive decline significantly impacts patient outcomes after radiotherapy. The activation of NLRP3 inflammasome within microglia after brain radiation is involved in the progression of RIBI by mediating inflammatory responses. We have previously shown that sulfonylurea receptor 1-transient receptor potential M4 (SUR1-TRPM4) mediates microglial NLRP3-related inflammation following global brain ischemia. However, the role of SUR1-TRPM4 in RIBI remains unclear. Here, we found that whole-brain radiation induced up-regulation and assembly of SUR1-TRPM4, which further activated the NLRP3 inflammasome in microglia and caused persistent neuroinflammation in mice. Blocking SUR1-TRPM4 by glibenclamide or gene deletion of Trpm4 effectively prevented NLRP3-mediated neuroinflammation and alleviated RIBI. Utilizing the mouse model of RIBI and irradiated BV2 cells, we further demonstrated that irradiation caused mitochondrial damage to microglia, leading to violent release of reactive oxygen species (ROS), which enhanced the transcription of SUR1, TRPM4, and NLRP3 inflammasome-related molecules. Moreover, ROS up-regulated ten-eleven translocation 2 (TET2) to enhance TRPM4 expression by mediating the demethylation of the gene promoter, thereby facilitating the assembly of SUR1-TRPM4 in microglia. In summary, this study deciphers that SUR1-TRPM4 crucially mediates the persistent activation of microglial NLRP3 inflammasome under the action of ROS after whole-brain radiation, offering novel therapeutic strategies for delayed RIBI as well as other NLRP3-related neurological disorders involving excessive ROS production.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Neuropathologica Communications
Acta Neuropathologica Communications Medicine-Pathology and Forensic Medicine
CiteScore
11.20
自引率
2.80%
发文量
162
审稿时长
8 weeks
期刊介绍: "Acta Neuropathologica Communications (ANC)" is a peer-reviewed journal that specializes in the rapid publication of research articles focused on the mechanisms underlying neurological diseases. The journal emphasizes the use of molecular, cellular, and morphological techniques applied to experimental or human tissues to investigate the pathogenesis of neurological disorders. ANC is committed to a fast-track publication process, aiming to publish accepted manuscripts within two months of submission. This expedited timeline is designed to ensure that the latest findings in neuroscience and pathology are disseminated quickly to the scientific community, fostering rapid advancements in the field of neurology and neuroscience. The journal's focus on cutting-edge research and its swift publication schedule make it a valuable resource for researchers, clinicians, and other professionals interested in the study and treatment of neurological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信